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Abstract 
Exposure to fine particulate matter (PM2.5) harms human health, 
and high–spatiotemporal–resolution estimates are needed for 
exposure assessment. We present a statewide 6‑hourly PM2.5 
modeling framework for California (Dec 2, 2020–Jun 30, 2025) 
that fuses ~3‑km HRRR‑Smoke with spatially lagged AQS PM2.5 
and monitor coordinates. A Random Forest trained with a strictly 
time‑forward 80/20 split attains MAE 0.541 µg/m³, 
RMSE 1.332 µg/m³, R² 0.936 on the held‑out window. The fitted 
model produces seamless 6‑hourly maps and seasonal/annual 
composites that consistently highlight the Central Valley and 
South Coast Air Basin; spring is cleanest, summer–autumn 
elevations align with wildfire smoke, and winter hotspots reflect 
Central Valley inversions. The statewide mean time series shows 
episodic late‑summer/early‑autumn maxima and a weak 
downward trend (−0.825 µg/m³ yr⁻¹, R² 0.055). Case‑day analyses 
reveal statewide smoke plumes on the Dixie Fire peak day 
(>200 µg/m³) and evening–overnight bumps on Independence 
Day (<25 µg/m³) contrasted with a Good level benchmark (≈2.5–
6.3 µg/m³). These results show that high‑resolution inputs like 
HRRR‑Smoke can support operational, 6‑hourly PM2.5 mapping 
with a simple, reproducible pipeline. 
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1 Introduction 
PM2.5 is a major environmental risk factor for public health, and 
existing studies have established its association with diseases such 
as cardiovascular [1]. Evidence further indicates that even 
exposure at low concentrations poses health risks [2]. Since PM2.5 
monitoring data are typically available at the station level, 
achieving high spatiotemporal resolution in prediction, 
estimation, and analysis is critical for capturing fine-scale 
dispersion patterns, thereby providing a solid data and technical 
foundation for public health protection. Research today 
emphasizes improving the temporal and spatial resolution of 
PM2.5 mass concentration across different scales [3]. Such efforts 
typically depend on meteorological inputs at relatively coarse 
resolutions or daily predictions combined with multi-source 
spatiotemporal feature engineering, a reliance that has 
consistently been shown to compromise predictive accuracy and 
weaken model robustness [4]. Datasets derived from low 
spatiotemporal-resolution data may result in limited performance 
for high-precision PM2.5 prediction [5]. And this might be due to 
uncertainty propagation caused by interpolation or restricted time 
ranges [6]. Such limitations also hinder further improvements and 
reduce the model’s generalization ability. 

In response, this research fuses HRRR (High-Resolution Rapid 

Refresh) ‑Smoke with its lightweight spatiotemporal features to 
produce accurate, maintaining high‑spatiotemporal‑resolution 
6‑hourly PM2.5 estimates over California with minimal model 
complexity. We emphasized producing statewide 6‑hourly PM2.5 
fields from ~3‑km inputs with minimal model complexity, 
evaluating them in a strictly time‑forward manner that mirrors 
operations, and documenting the workflow end‑to‑end for 
reproducibility and efficient deployment.  

2 Methodology 

2.1 Data 
2.2.1 Hourly PM2.5 data of EPA. We retrieved hourly PM2.5 

from EPA’s Air Quality System (AQS) via API and used it as the 
dependent variable. Records were filtered to active and primary 
NAAQS monitors during Dec 2020–Jun 2025 with1‑hour sample 
duration. After filtering, 21 monitors across California remained. 
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To match HRRR timing, hours were aggregated to 
non‑overlapping 6‑hour windows (00–05, 06–11, 12–17, 18–
23 UTC) using simple means; each record retains site 
latitude/longitude and the 6‑hour timestamp (window end at 
00/06/12/18). 

2.2.2 HRRR-Smoke. The HRRR is NOAA’s a numerical weather 
prediction model at ~3 km horizontal resolution with hourly 
cycles and its radar reflectivity is assimilated roughly every 
15 minutes within each cycle, which is real-time and 
convection-allowing [7]. We used the latest HRRRv4 since 
December 2, 2020 is the most practical and operational one, for it 
has inline smoke prediction, improved boundary-layer cloud 
treatment and lake temperatures, a 3-km ensemble 
data-assimilation upgrade, and 48-hour forecasts every 6 hours. 
HRRRv4 has various variables reflecting different meteorological 
parameters’ conditions. Here, we chose the 8m near-surface 
smoke mass concentration as our proxy for PM2.5. HRRR-Smoke 
also provides regional plume context that complements the local 
persistence encoded by spatial lags. The HRRR data from its native 
projection to the WGS84 coordinate system to match the PM2.5 
monitoring data. The Nearest-neighbor resampling method was 
applied to maximize the retention of the original data values. 

2.2 Spatially Lagged PM2.5 
PM2.5 exhibits spatial auto correlation across monitoring sites 
because nearby locations share emissions, transport pathways, 
and boundary‑layer conditions. We represented this dependence 
with a spatial‑lag operator that aggregates recent observations 
from neighboring sites into a weighted predictor for the target site 
and time [1]. The spatial‑lag predictor is defined by the normalized, 
inverse‑distance‑weighted mean of neighboring observations: 

𝑆𝑖
(𝑝)

(𝑡, 𝑘) =
∑ 𝑤𝑖𝑗

(𝑝)
𝑦𝑗(𝑡 − 𝑘)𝑗∈𝑁𝑖(𝑅)

∑ 𝑤𝑖𝑗
(𝑝)

𝑗∈𝑁𝑖(𝑅)

 

(1) 

𝑤𝑖𝑗
(𝑝)

= (𝑚𝑎𝑥{𝑑𝑖𝑗 , 𝑑𝑚𝑖𝑛})−𝑝 (2) 

𝑝 ∈ {1, 2} 

where 𝑦𝑗(𝑡 − 𝑘) is the 6-hour mean PM2.5 at monitor 𝑗 and time 

window 𝑡; 𝑁𝑖(𝑅) = {𝑗 ≠ 𝑖: 𝑑𝑖𝑗 ≤ 𝑅}is the neighbor set for target 
site i under radius 𝑅 ; 𝑑𝑖𝑗   is the great-circle distance (kilometer) 
between sites 𝑖 and 𝑗 under WGS84 coordinate system; 𝑑𝑖𝑗 > 0 is 

a small cutoff to avoid singular weights; 𝑤𝑖𝑗
(𝑝)  is the 

inverse-distance weight with exponent 𝑝 ; and 𝑘 ∈ {0,1,2,3,4} 
indexes temporal lags of 0, 6, 12, 18, and 24 hours. 

To prevent information leakage, the contemporaneous feature 
(𝑘 = 0) excludes the target site’s own observation, and all features 
at test times are computed using only observations available up to 
𝑡 − 𝑘 . Missing neighbor observations at a given window are 
omitted from the sums; when no neighbors are available within 
the search bounds, the spatial‑lag value is imputed from a 
broader‑area weighted mean for that window. Neighbor sets are 
obtained either by applying a fixed radius 𝑅  or by adaptively 
expanding 𝑅 until a minimum number of neighbors m is reached, 
subject to an upper cap 𝑅𝑚𝑎𝑥 . Here we used 𝑝 = 1 and enforce a 
modest minimum neighbor count with 𝑅𝑚𝑎𝑥 on the order of 10² 

km, which produced stable features without inflating collinearity 
across temporal lags. Distances are computed as Haversine 
distances. Neighbor queries are accelerated with a spherical 
search tree, and the resulting weights and normalizers are cached 

so that 𝑆𝑖
(𝑝)

(𝑡, 𝑘) can be evaluated efficiently for all sites and lags. 
We constructed five spatial‑lag features with 𝑝 = 1 at 𝑘 = 0, 1, 

2, 3, and 4, referred to elsewhere as sllag_0, sllag_6, sllag_12, 
sllag_18, and sllag_24, summarizing local persistence and 
neighborhood context at horizons from 0 to 24 hours. 

2.3 Modeling with Random Forest Regressor 
We fitted a Random Forest regressor using the open‑source 
Python machine‑learning library scikit‑learn [8]. This has been 
leveraged in many studies [9]. The input features of the model 
comprise (i) HRRR-Smoke’s 8m near-surface smoke mass 
concentration sampled at the monitor’s nearest native 3-km grid 
cell with a 6-hour lead aligned to 00/06/12/18 UTC computed with 
leave-one-site-out at k = 0 and time-forward availability; (ii) 
spatially lagged PM2.5 constructed at 0, 6, 12, 18, and 24 hours as 
inverse-distance-weighted neighborhood means and strict 
time-forward computation; and (iii) site latitude and longitude. 
We harmonized AQS and HRRR timestamps, dropped incomplete 
rows, and built the five spatial-lag features (sllag_0/6/12/18/24) at 
each time step. 

The model’s hyperparameters were tuned by a compact grid 
search with time‑aware three‑fold cross‑validation: in each fold, 
the model was trained on earlier timesteps and validated on a later, 
non‑overlapping block in a rolling, blocked‑split scheme, thereby 
respecting chronology and preventing information leakage. To 
approximate true PM2.5 results, we adopted a strict chronological 
split, reserving the latest 20% of timesteps as the test set, namely 
the train-test split is 8:2. The label is the 6-hour mean PM2.5 
aggregated from hourly AQS observations.  

3 Results 

3.1 Model Performance 
3.1.1 Evaluation Metrices. On the held-out test window, the 

model attains MAE = 0.541 µg/m³, RMSE = 1.332 µg/m³, and R

² = 0.936; the corresponding train metrics are MAE = 0.349 µg/m

³ , RMSE = 1.445 µg/m³ , and R²  = 0.976. These values indicate 
strong out-of-sample accuracy with modest error magnitudes 
relative to day-to-day variability. An R² above 0.93 suggests that 
the chosen features capture most of the spatiotemporal structure 
relevant for monitor-level PM2.5 in California. The 
predicted-versus-observed cloud closely follows the 1:1 line from 
0 to about 30 µg/m³ (Figure 1). At higher concentrations the 
relationship bends below the 1:1 line, indicating mild 
underestimation above ~45 µg/m³ and a soft ceiling near ~55 µg/m

³. The same plot reports the test-set coefficient of determination 

(R ²  = 0.936), which, together with the visual agreement, 
summarizes overall skill. Residuals r = (prediction vs. observation) 
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are tightly clustered and centered slightly negative (mean ≈ −

0.17; 1σ ≈ 1.32). 

Figure 1: Model Predictions vs. Observed PM2.5 Scatter 

3.1.2 Feature importance. We summarize predictor contributions 
using mean decrease in impurity (MDI) from the trained Random 
Forest. MDI offers a fast, construction‑time indication of relative 
influence by attributing variance reduction across all trees and 
normalizing over features. Interpreted qualitatively, the 
contemporaneous spatial lag provides the dominant signal; short 
temporal lags follow; HRRR‑Smoke contributes a meaningful 
regional scaffold; and latitude/longitude supply only a light 
broad‑scale correction (Figure 2). Taken together, the model 
behaves as a hybrid: spatial lags encode local persistence and 
neighborhood context, HRRR‑Smoke lays down regional plume 
structure, and coordinates stabilize low‑frequency spatial trends. 
Latitude and longitude add only a weak broad scale correction. 
Taken together, the model functions as a hybrid in which spatial 
lags provide local persistence and neighborhood context, HRRR 
Smoke supplies regional plume structure, and coordinates 
stabilize low frequency spatial trends. Because MDI redistributes 
credit among correlated lags, we treat the ranking as the robust 
takeaway rather than the absolute magnitudes. 

Figure 2: Random‑Forest MDI importances 

 

3.2 Spatial Distribution and Temporal Trend 
3.2.1 Statewide 6 hourly seasonal–annual distributions. Using the 
trained Random Forest model, we generated 6‑hourly PM2.5 
prediction surfaces statewide for Dec 2, 2020–Jun 30, 2025 
(Figure 3). Seasonal and annual composites show stable 
geography: the annual mean concentrates along the Central 
Valley and the South Coast Air Basin, with lower values on the 
immediate coast and higher terrain. Spring is cleanest statewide. 
Summer exhibits marked enhancements over southern California 
and the Central Valley/Sierra foothills, consistent with smoke 
transport and warm‑season stagnation. Autumn remains elevated 
over the Central Valley and parts of southern California, aligning 
with late‑season fires and shallow boundary layers. Winter shows 
localized Central Valley hotspots tied to inversions, while coastal 
and mountain regions stay comparatively low. The common scale 
(~2.4–16.4 µg/m³) situates these contrasts within a moderate 
regime punctuated by episodic spikes evident in the time series.  

Figure 3: Seasonal and Annual Spatial Distribution of PM2.5 
Mass Concentration in CA 

3.2.2 Case Study: Wildfire, Holiday Celebrations, and Baseline. 
Using the estimation results generated by our model, we examine 
two representative events and a quiet-day baseline in panels 
keyed to local cycles in California (PDT, UTC−7; UTC windows 
rotated back one slot so that T06=00:00–06:00, T12=06:00–12:00, 
T18=12:00–18:00, T00=18:00–24:00) (Figure 4). On the Dixie Fire 
peak day (2021-08-07), maps show a coherent north-state plume 
extending across the Sacramento Valley and into downwind 
basins, broadening from T06 to T12, remaining elevated at T18, 
and easing by T00 as transport shifts; the event exhibits extreme 
spatial contrast with a color-scale maximum of 216.9 µg/m³ and a 
minimum near 0.51 µg/m³. On Independence Day (2024-07-04), 
enhancements are metro-focused rather than statewide, most 
noticeable over the South Coast Air Basin in the evening–
overnight windows (T18–T00), with maxima up to 24.6 µg/m³ and 
rapid next-morning dilution. The baseline, defined by windows 
classified as Good (PM2.5 < 12 µg/m³), remains uniformly low with 
a persistent coast–inland gradient; the Central Valley sits slightly 
above coastal and mountainous regions and diurnal modulation is 
modest, consistent with real-world patterns, with a color scale 
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spanning 2.45–6.27 µg/m³ [10]. Time-of-day profiles summarize 
these contrasts: during the Dixie Fire the statewide maximum 
exceeds 200 µg/m³, the mean is elevated at all times and peaks near 
T12, and variability (≈±1σ) widens markedly; on Independence 
Day the mean rises only modestly above baseline and the spread 
widens mainly at T18–T00, while the baseline remains flat and 
low with a narrow spread.  

Figure 4: Case‑day Spatiotemporal PM2.5 Mass 
Concentration and Time‑of‑day Trends in California 

4 Conclusion 
By fusing ~3 km HRRR Smoke, spatially lagged PM2.5 at 0–24 h, 
and site coordinates, we produced 6 hourly PM2.5 estimates for 
California from December 2020 through June 2025 with good 
sample skill (MAE 0.541 µg/m³; RMSE 1.332 µg/m³; R² 0.936). 
Beyond point performance, the derived maps and seasonal/annual 
composites reveal persistent geography—Central Valley and the 
South Coast Air Basin as hotspots, coast and mountains lower—
with spring cleanest, summer–autumn elevated by smoke 
transport, and winter inversions creating localized peaks. The 
statewide mean time series underscores the episodic character of 

PM2.5 and indicates only a small downward trend (−0.825 µg/m³ 
yr⁻¹, R² 0.055). The case study confirms that this 6-hour product 
resolves both regional smoke intrusions and short-lived urban 
emissions, underscoring its operational value for situational 
awareness.  
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