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Abstract

Exposure to fine particulate matter (PM2.5) harms human health,
and high-spatiotemporal-resolution estimates are needed for
exposure assessment. We present a statewide 6-hourly PM2.5
modeling framework for California (Dec 2, 2020—Jun 30, 2025)
that fuses ~3-km HRRR-Smoke with spatially lagged AQS PM2.5
and monitor coordinates. A Random Forest trained with a strictly
time-forward ~ 80/20 split  attains ~ MAE 0.541 pg/m’®,
RMSE 1.332 pg/m®, R*0.936 on the held-out window. The fitted
model produces seamless 6-hourly maps and seasonal/annual
composites that consistently highlight the Central Valley and
South Coast Air Basin; spring is cleanest, summer—autumn
elevations align with wildfire smoke, and winter hotspots reflect
Central Valley inversions. The statewide mean time series shows
episodic late-summer/early-autumn maxima and a weak
downward trend (-0.825 pg/m? yr*, R? 0.055). Case-day analyses
reveal statewide smoke plumes on the Dixie Fire peak day
(>200 pg/m®) and evening-overnight bumps on Independence
Day (<25 pg/m®) contrasted with a Good level benchmark (%2.5-
6.3 ug/m®). These results show that high-resolution inputs like
HRRR-Smoke can support operational, 6-hourly PM2.5 mapping
with a simple, reproducible pipeline.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; e
Applied computing — Environmental sciences.

KEYWORDS

High-spatiotemporal-resolution PM2.5, PM2.5 estimation, Spatial
lag

ACM Reference format:

Zhiqing Huang, Song Gao, Qunying Huang. 2025. High-Spatiotemporal-R
esolution PM2.5 Mapping in California: 6-Hourly Estimates with 3-km
HRRR-Smoke. In Ist ACM SIGSPATIAL International Workshop on
Geospatial Computing for Public Health Proceedings (GeoHealth'25),
November 3-November 3, 2025, Minneapolis, MN, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3764918.3770163

This work is licensed under Creative Commons Attribution International 4.0.
GeoHealth '25, November 3-6, 2025, Minneapolis, MN, USA

© 2025 Copyright is held by the owner/author(s).

ACM ISBN 979-8-4007-2181-6/2025/11.
https://doi.org/10.1145/3764918.3770163

1 Introduction

PM2.5 is a major environmental risk factor for public health, and
existing studies have established its association with diseases such
as cardiovascular [1]. Evidence further indicates that even
exposure at low concentrations poses health risks [2]. Since PM2.5
monitoring data are typically available at the station level,
achieving high spatiotemporal resolution in prediction,
estimation, and analysis is critical for capturing fine-scale
dispersion patterns, thereby providing a solid data and technical
foundation for public health protection. Research today
emphasizes improving the temporal and spatial resolution of
PM2.5 mass concentration across different scales [3]. Such efforts
typically depend on meteorological inputs at relatively coarse
resolutions or daily predictions combined with multi-source
spatiotemporal feature engineering, a reliance that has
consistently been shown to compromise predictive accuracy and
weaken model robustness [4]. Datasets derived from low
spatiotemporal-resolution data may result in limited performance
for high-precision PM2.5 prediction [5]. And this might be due to
uncertainty propagation caused by interpolation or restricted time
ranges [6]. Such limitations also hinder further improvements and
reduce the model’s generalization ability.

In response, this research fuses HRRR (High-Resolution Rapid
Refresh) -Smoke with its lightweight spatiotemporal features to
produce accurate, maintaining high-spatiotemporal-resolution
6-hourly PM2.5 estimates over California with minimal model
complexity. We emphasized producing statewide 6-hourly PM2.5
fields from ~3-km inputs with minimal model complexity,
evaluating them in a strictly time-forward manner that mirrors
operations, and documenting the workflow end-to-end for
reproducibility and efficient deployment.

2 Methodology

2.1 Data

2.2.1 Hourly PM2.5 data of EPA. We retrieved hourly PM2.5
from EPA’s Air Quality System (AQS) via API and used it as the
dependent variable. Records were filtered to active and primary
NAAQS monitors during Dec 2020-Jun 2025 with1-hour sample
duration. After filtering, 21 monitors across California remained.
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To match HRRR timing, hours were aggregated to
non-overlapping 6-hour windows (00-05, 06-11, 12-17, 18-
23 UTC) using simple means; each record retains site
latitude/longitude and the 6-hour timestamp (window end at
00/06/12/18).

2.2.2 HRRR-Smoke. The HRRR is NOAA’s a numerical weather
prediction model at ~3 km horizontal resolution with hourly
cycles and its radar reflectivity is assimilated roughly every
15 minutes within each cycle, which is real-time and
convection-allowing [7]. We used the latest HRRRv4 since
December 2, 2020 is the most practical and operational one, for it
has inline smoke prediction, improved boundary-layer cloud
treatment and lake temperatures, a 3-km ensemble
data-assimilation upgrade, and 48-hour forecasts every 6 hours.
HRRRv4 has various variables reflecting different meteorological
parameters’ conditions. Here, we chose the 8m near-surface
smoke mass concentration as our proxy for PM2.5. HRRR-Smoke
also provides regional plume context that complements the local
persistence encoded by spatial lags. The HRRR data from its native
projection to the WGS84 coordinate system to match the PM2.5
monitoring data. The Nearest-neighbor resampling method was
applied to maximize the retention of the original data values.

2.2 Spatially Lagged PM2.5

PM2.5 exhibits spatial auto correlation across monitoring sites
because nearby locations share emissions, transport pathways,
and boundary-layer conditions. We represented this dependence
with a spatial-lag operator that aggregates recent observations
from neighboring sites into a weighted predictor for the target site
and time [1]. The spatial-lag predictor is defined by the normalized,
inverse-distance-weighted mean of neighboring observations:

W e Sien@ Wi it = k) (1)
S (6 k) = ®
Yjenyr) Wij
WL(]p) = (max{dij,dmin})_p (2)
p €{1,2}

where y;(t — k) is the 6-hour mean PM2.5 at monitor j and time
window t; N;(R) = {j # i: di; < R}is the neighbor set for target
site i under radius R; d;; is the great-circle distance (kilometer)

between sites i and j under WGS84 coordinate system; d;; > 0 is

a small cutoff to avoid singular weights; Wi(]p) is the

inverse-distance weight with exponent p; and k € {0,1,2,3,4}
indexes temporal lags of 0, 6, 12, 18, and 24 hours.

To prevent information leakage, the contemporaneous feature
(k = 0) excludes the target site’s own observation, and all features
at test times are computed using only observations available up to
t — k. Missing neighbor observations at a given window are
omitted from the sums; when no neighbors are available within
the search bounds, the spatial-lag value is imputed from a
broader-area weighted mean for that window. Neighbor sets are
obtained either by applying a fixed radius R or by adaptively
expanding R until a minimum number of neighbors m is reached,
subject to an upper cap R;4,. Here we used p = 1 and enforce a
modest minimum neighbor count with R4, on the order of 10°
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km, which produced stable features without inflating collinearity
across temporal lags. Distances are computed as Haversine
distances. Neighbor queries are accelerated with a spherical
search tree, and the resulting weights and normalizers are cached
so that Si(p) (t, k) can be evaluated efficiently for all sites and lags.
We constructed five spatial-lag features withp =1 atk =0, 1,
2, 3, and 4, referred to elsewhere as sllag_0, sllag_6, sllag_12,
sllag_18, and sllag 24, summarizing local persistence and
neighborhood context at horizons from 0 to 24 hours.

2.3 Modeling with Random Forest Regressor

We fitted a Random Forest regressor using the open-source
Python machine-learning library scikit-learn [8]. This has been
leveraged in many studies [9]. The input features of the model
comprise (i) HRRR-Smoke’s 8m near-surface smoke mass
concentration sampled at the monitor’s nearest native 3-km grid
cell with a 6-hour lead aligned to 00/06/12/18 UTC computed with
leave-one-site-out at k=0 and time-forward availability; (ii)
spatially lagged PM2.5 constructed at 0, 6, 12, 18, and 24 hours as
inverse-distance-weighted neighborhood means and strict
time-forward computation; and (iii) site latitude and longitude.
We harmonized AQS and HRRR timestamps, dropped incomplete
rows, and built the five spatial-lag features (sllag_0/6/12/18/24) at
each time step.

The model’s hyperparameters were tuned by a compact grid
search with time-aware three-fold cross-validation: in each fold,
the model was trained on earlier timesteps and validated on a later,
non-overlapping block in a rolling, blocked-split scheme, thereby
respecting chronology and preventing information leakage. To
approximate true PM2.5 results, we adopted a strict chronological
split, reserving the latest 20% of timesteps as the test set, namely
the train-test split is 8:2. The label is the 6-hour mean PM2.5
aggregated from hourly AQS observations.

3 Results

3.1 Model Performance

3.1.1 Evaluation Metrices. On the held-out test window, the
model attains MAE = 0.541 pg/m*, RMSE = 1.332 pg/m’, and R
? =0.936; the corresponding train metrics are MAE = 0.349 pg/m
>, RMSE = 1.445 pg/m’ , and R®> =0.976. These values indicate
strong out-of-sample accuracy with modest error magnitudes
relative to day-to-day variability. An R*> above 0.93 suggests that
the chosen features capture most of the spatiotemporal structure
relevant for monitor-level PM2.5 in California. The
predicted-versus-observed cloud closely follows the 1:1 line from
0 to about 30 pg/m* (Figure 1). At higher concentrations the
relationship bends below the 1:1 line, indicating mild
underestimation above ~45 pg/m* and a soft ceiling near ~55 pg/m
*. The same plot reports the test-set coefficient of determination
(R? = 0.936), which, together with the visual agreement,
summarizes overall skill. Residuals r = (prediction vs. observation)



High-Spatiotemporal-Resolution PM2.5 Mapping in California: 6-
Hourly Estimates with 3-km HRRR-Smoke and Spatial Lags

are tightly clustered and centered slightly negative (mean ~ —
0.17; 10 =~ 1.32).
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Figure 1: Model Predictions vs. Observed PM2.5 Scatter

3.1.2 Feature importance. We summarize predictor contributions
using mean decrease in impurity (MDI) from the trained Random
Forest. MDI offers a fast, construction-time indication of relative
influence by attributing variance reduction across all trees and
normalizing over Interpreted qualitatively, the
contemporaneous spatial lag provides the dominant signal; short
temporal lags follow; HRRR-Smoke contributes a meaningful
regional scaffold; and latitude/longitude supply only a light
broad-scale correction (Figure 2). Taken together, the model
behaves as a hybrid: spatial lags encode local persistence and
neighborhood context, HRRR-Smoke lays down regional plume
structure, and coordinates stabilize low-frequency spatial trends.

features.

Latitude and longitude add only a weak broad scale correction.
Taken together, the model functions as a hybrid in which spatial
lags provide local persistence and neighborhood context, HRRR
Smoke supplies regional plume structure, and coordinates
stabilize low frequency spatial trends. Because MDI redistributes
credit among correlated lags, we treat the ranking as the robust
takeaway rather than the absolute magnitudes.
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Figure 2: Random-Forest MDI importances
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3.2 Spatial Distribution and Temporal Trend

3.2.1 Statewide 6 hourly seasonal-annual distributions. Using the
trained Random Forest model, we generated 6-hourly PM2.5
prediction Dec 2, 2020-Jun 30, 2025
(Figure 3). Seasonal and annual composites show stable

surfaces statewide for
geography: the annual mean concentrates along the Central
Valley and the South Coast Air Basin, with lower values on the
immediate coast and higher terrain. Spring is cleanest statewide.
Summer exhibits marked enhancements over southern California
and the Central Valley/Sierra foothills, consistent with smoke
transport and warm-season stagnation. Autumn remains elevated
over the Central Valley and parts of southern California, aligning
with late-season fires and shallow boundary layers. Winter shows
localized Central Valley hotspots tied to inversions, while coastal
and mountain regions stay comparatively low. The common scale
(~2.4-16.4 pg/m®) situates these contrasts within a moderate
regime punctuated by episodic spikes evident in the time series.
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Figure 3: Seasonal and Annual Spatial Distribution of PM2.5
Mass Concentration in CA

3.2.2 Case Study: Wildfire, Holiday Celebrations, and Baseline.
Using the estimation results generated by our model, we examine
two representative events and a quiet-day baseline in panels
keyed to local cycles in California (PDT, UTC-7; UTC windows
rotated back one slot so that T06=00:00-06:00, T12=06:00-12:00,
T18=12:00-18:00, T00=18:00-24:00) (Figure 4). On the Dixie Fire
peak day (2021-08-07), maps show a coherent north-state plume
extending across the Sacramento Valley and into downwind
basins, broadening from T06 to T12, remaining elevated at T18,
and easing by T00 as transport shifts; the event exhibits extreme
spatial contrast with a color-scale maximum of 216.9 pg/m® and a
minimum near 0.51 pg/m>® On Independence Day (2024-07-04),
enhancements are metro-focused rather than statewide, most
noticeable over the South Coast Air Basin in the evening-
overnight windows (T18-T00), with maxima up to 24.6 ug/m* and
rapid next-morning dilution. The baseline, defined by windows
classified as Good (PM2.5 < 12 pg/m®), remains uniformly low with
a persistent coast—inland gradient; the Central Valley sits slightly
above coastal and mountainous regions and diurnal modulation is
modest, consistent with real-world patterns, with a color scale
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spanning 2.45-6.27 pg/m® [10]. Time-of-day profiles summarize
these contrasts: during the Dixie Fire the statewide maximum
exceeds 200 pg/m?, the mean is elevated at all times and peaks near
T12, and variability (»+1c) widens markedly; on Independence
Day the mean rises only modestly above baseline and the spread
widens mainly at T18-T00, while the baseline remains flat and
low with a narrow spread.
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Figure 4: Case-day Spatiotemporal PM2.5 Mass
Concentration and Time-of-day Trends in California

4 Conclusion

By fusing ~3 km HRRR Smoke, spatially lagged PM2.5 at 0-24 h,
and site coordinates, we produced 6 hourly PM2.5 estimates for
California from December 2020 through June 2025 with good
sample skill (MAE 0.541 pg/m* RMSE 1.332 pg/m’ R* 0.936).
Beyond point performance, the derived maps and seasonal/annual
composites reveal persistent geography—Central Valley and the
South Coast Air Basin as hotspots, coast and mountains lower—
with spring cleanest, summer-autumn elevated by smoke
transport, and winter inversions creating localized peaks. The
statewide mean time series underscores the episodic character of
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PM2.5 and indicates only a small downward trend (-0.825 pug/m’
yr', R? 0.055). The case study confirms that this 6-hour product
resolves both regional smoke intrusions and short-lived urban
emissions, underscoring its operational value for situational
awareness.
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