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Abstract
Recent advances in large-scale humanmobility datasets have opened
new opportunities to improve public health through data-driven
strategies, advanced computational methods, and interdisciplinary
approaches. A key focus in epidemiological research is the esti-
mation and analysis of social contact patterns—representing the
frequency and nature of interactions among different demographic
groups. These patterns are vital for modeling disease transmission,
evaluating public health interventions, and guiding resource al-
location. However, obtaining accurate and representative contact
data remains a major challenge. In this paper, we propose a novel,
scalable framework for generating and analyzing large-scale so-
cial contact datasets derived from foot-traffic data. Our approach
integrates statistical modeling to estimate demographic distribu-
tions—such as age groups—at millions of points of interest (POIs)
across the United States and globally, including restaurants, stores,
hospitals, and schools. This framework enables actionable insights
to inform public health strategies and improve population health
outcomes. Moreover, the resulting datasets have broad cross-sector
utility, supporting applications in strategic business planning, re-
source distribution, and personalized marketing and advertising.

CCS Concepts
• Information systems→ Geographic information systems;
Location based services; • Applied computing → Health care
information systems.
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Table 1: A simple example of a contact pattern showing the
number of contacts between three age groups (young, middle-
aged, and elderly) in a population.

Elderly 20 30 40
Middle 50 80 30
Young 100 50 20
From / To Young Middle Elderly

1 Introduction
The emergence of large-scale datasets has revolutionized public
health research by enabling the discovery of previously inacces-
sible insights and patterns [1]. These datasets provide a critical
foundation for understanding complex health issues, identifying
trends, and informing evidence-based interventions. However, data
availability and quality often vary significantly across regions and
populations [2, 3]. Researchers frequently face obstacles in ac-
cessing comprehensive datasets that accurately capture the demo-
graphics and behaviors of the populations under study. Large-scale
datasets enriched with demographic information are vital for gen-
erating meaningful insights and guiding effective public health
responses [4]. To effectively guide public health responses, it is
crucial to understand social contact patterns; defined as the fre-
quency and nature of interactions between different demographic
groups within a population. These patterns are essential for mod-
eling disease transmission, evaluating public health interventions,
and informing resource allocation strategies. A simple example of
a contact pattern is depicted in Table 1, which shows the number
of contacts between three age groups (young, middle-aged, and
elderly) in an imaginary population. For instance, the last row indi-
cates that young people have 100 contacts with other young people,
50 contacts with middle-aged individuals, and 20 contacts with
elderly individuals.

Contact patterns are traditionally collected through surveys or
diaries, which are often time-consuming and expensive, and have
been used intensively by the public health community [5–11] to esti-
mate contact patterns in specific populations and settings. However,
these methods typically involve small populations, such as man-
ually collected contact diaries at specific healthcare facilities [5],
rural and urban areas in Mozambique [6–8], or long-term care fa-
cilities [9]. These studies are usually limited to specific populations
and settings, making it challenging to generalize findings to larger
populations. One of the largest studies, which surveyed 4654 partic-
ipants across the United States, can be found in [10]. However, even
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with national sampling, the density of data for individual states,
cities, regions, and specific places of interest remains insufficient
for comprehensive analysis.

In this paper, we propose an approach to generate social con-
tact patterns for every place of interest in the United States and
across the world using publicly available foot-traffic data captur-
ing the mobility of tens of millions of individuals. Foot-traffic data
refers to information about the movement of individuals to and
from specific locations, often aggregated and anonymized to pro-
tect privacy. Advan Research [12] provides foot-traffic data for 7
million places of interest (POI) in the United States, capturing ap-
proximately 50 million cell phone users. For each POI, the home
locations of the visiting individuals are aggregated at the census
block group (CBG) levels, offering insight into the number of visi-
tors, their stay duration, and their home CBGs. Such datasets are
invaluable for understanding human mobility patterns and their
implications for public health, urban planning, and commercial
applications. Through extensive exploration of various aspects of
spatial data [13–19], we have identified demographic information
as a critical factor in understanding social behaviors and public
health outcomes. Unfortunately, such demographic data are fre-
quently incomplete, unavailable, or deliberately excluded due to
privacy concerns and participant reluctance.

Contact patterns can accurately model the spread of infectious
diseases within a population. They help researchers and policy-
makers predict and prevent pandemics, analyze social behavior
for public safety or commercial purposes, and make data-driven
decisions about resource allocation. By examining interactions be-
tween demographic groups, high-risk populations can be identified,
enabling targeted interventions to reduce transmission, such as in
the case of monkeypox, where age significantly influences the risk
factors [20]. Incorporating age-specific transmission rates allows
for more precise estimates of disease propagation across population
segments. This information is essential for guiding public health
strategies, including prioritizing vaccinations for vulnerable groups
and implementing targeted social distancingmeasures. Additionally,
understanding contact patterns can reveal potential superspreader
events or high-risk locations, supporting more effective contain-
ment. Businesses can also apply these insights to optimize service
delivery and enhance customer engagement by analyzing social
interaction dynamics at key points of interest.

Our goal in this paper is to address these challenges by devel-
oping methods to generate detailed and accurate social contact
patterns for any POI in the world. One input to the algorithm is the
number of visitors to each location grouped by their home CBG
available from Advan data. The second input to the algorithm is the
demographic distribution of the local population, available from
the U.S. Census Bureau. By combining these two datasets, we can
estimate the demographic composition of visitors to each POI using
the proposed statistical techniques, as detailed in Section 4. In gen-
eral, we will estimate the demographic composition of visitors, such
as age groups, gender distribution, and socioeconomic status, in a
range of POIs, including retail settings, healthcare facilities, educa-
tional institutions, and public spaces. Our approach systematically
incorporates demographic data into spatial analyses, enhancing
predictive modeling capabilities and enabling more targeted public

health interventions. With these insights, the research objectives
of this paper are as follows:
• Estimate the demographic distribution of visitors to various

points of interest (POIs) using direct probability assignment
• Provide the steps to generate comprehensive datasets tailored

to key demographic variables, including age, gender, socioeco-
nomic status, and other relevant attributes.

• Generate social contact patterns that capture interactions be-
tween demographic groups within each POI.

In the remainder of this paper, we present related work in Sec-
tion 2, define the problem in Section 3, describe our proposed
methodology in detail in Section 4, present the contact matrices for
selected POIs in Section 5, and conclude with a discussion of the
future works in Section 6.

2 Related Works
The social contact patterns is important and has been studied
in different research contexts. Studies using contact diaries have
shown stable patterns of interaction among healthcare workers and
their role in transmission dynamics [5]. Data from rural and urban
Mozambique highlighted age-related and setting-specific contact
patterns, revealing the limitations of synthetic models and the need
for localized empirical data [6, 7]. Changes in U.S. employee contact
rates during COVID-19 indicated rising transmission potential in
community settings [8]. Long-term care facility employees exhib-
ited distinct contact behaviors across household and workplace
settings, showing how staff may bridge community and institu-
tional transmission [9]. Nationwide surveys revealed disparities in
contact rates by socioeconomic status, linking structural inequali-
ties to differential COVID-19 outcomes [10]. Outbreak modeling at
a scout jamboree emphasized the role of superspreaders and net-
work clustering in transmission [11]. The challenge of gathering
comprehensive social contact data lies in the infeasibility of direct
collection across all populations and settings. However, due to the
widespread availability of location-sharing services, datasets such
as Advan foot traffic data [12], and tools that report place-specific
visitation patterns, it is increasingly feasible to estimate social con-
tact patterns. These sources provide information on the number and
timing of visitors to points of interest (POIs), and when combined
with statistical demographic data from sources such as the U.S. Cen-
sus, can yield meaningful estimates even without individual-level
demographics.

3 Problem Definition
Figure 1 illustrates a simple example involving three age groups
visiting the Kaldi’s Coffee at Emory University from four different
census block groups (CBGs). Each CBG has a different age distribu-
tion, and the goal is to calculate the aggregate age distribution of
all visitors to Kaldi’s Coffee.
• CBG1: 15 visitors, with 60% old, 30% middle, and 10% young
• CBG2: 30 visitors, with 30% old, 30% middle, and 40% young
• CBG3: 35 visitors, with 20% old, 40% middle, and 40% young
• CBG4: 55 visitors, with 30% old, 10% middle, and 60% young
The question is: What is the overall percentage of each age group

among all visitors to Kaldi’s Coffee?
To estimate the age group distributions of visitors to a POI, we

can use the known age distributions of the CBGs from which they
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Figure 1: Simplified problem of estimating visitor ages based on
their CBG origins. Kaldi’s Coffee is a café at Emory University.
originate. A naive solution can be achieved by multiplying the
total number of visitors by the proportion of each age group of the
CBGs. This can give an estimate of the number of visitors in each
age group. Applying this approach to the problem in Figure 1, we
estimate the number of visitors from each age group for the POI in
Table 2. Notably, Figure 1 only shows a toy example having only
four CBGs and three age groups. In practice, a real-world dataset
would involve more age groups and hundreds of CBGs, resulting in
a highly overdetermined linear system with many more equations
than unknowns.

4 Methodology
To conduct this research, we collected two primary datasets: Demo-
graphic data and visitors data. The demographic data were sourced
from the Census Bureau, providing detailed demographic distribu-
tions for various Census Block Groups (CBGs). Visitor data was
obtained from the Foot-traffic data provided by a location-based ser-
vices, Advan [12], which tracks anonymized movement patterns to
Points of Interest (POIs). The demographic data includes population
proportions for different demographic groups for each CBG, while
the visitor data provide the total number of visitors to specific POIs,
aggregated by CBG. By combining these datasets, we can estimate
the demographic distribution of visitors to POIs using the proposed
methodology.
4.1 Data
We construct contact matrices based on two primary dataset: the
Advan Weekly Patterns dataset [12] and the American Community
Survey (ACS) 5-year Estimates [21]. The Advan dataset provides in-
formation at the point of interest (POI) level, including POI IDs, POI
names, weekly aggregated CBG distributions of visitors, median
dwell times, etc. The ACS data supplies the demographic composi-
tion, specifically age distribution of each CBG in the study area.

For this analysis, we focus on greater Atlanta, Georgia, in 2019.
The area covers 5 counties in total: Fulton, Gwinnett, Cobb, DeKalb,
and Clayton. From the Advan dataset, we extract the visitor data and
other relevant information of all available POIs located within those
counties, including POI IDs, the home CBGs of visitors each week,
hourly visit counts, and median dwell time. ACS data from the same
five counties in 2019 is used to determine the age group composition
of each CBG. It is aggregated into the following groups: 0-9 years,
10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years and

Table 2: Estimated visitor count in each age group for Figure 1
Old Middle Young

CBG1 15*0.6 15*0.3 15*0.1
CBG2 30*0.3 30*0.3 30*0.4
CBG3 35*0.2 35*0.4 35*0.4
CBG4 55*0.3 55*0.1 55*0.6
Estimated 42 33 61

60+ years old. These groups are chosen to balance demographic
granularity with privacy and statistical robustness.
4.2 Implementation
The construction of contact matrices involves estimating the ex-
pected number of co-presences between visitors of different age
groups at each POI across time. The process proceeds in three main
steps:
Step 1 – Sampling Age Distribution of POI Visitors: For each
POI in each week, we retrieve the distribution of home CBGs of
visitors from the Advan dataset and use the ACS age compositions
of those CBGs to calculate an estimated age distribution of visitors.
The visitor age groups of each CBG are randomly sampled based
on the age distribution of that CBG, and then aggregated together
to represent the visitor age composition of the selected POI in that
selected week.
Step 2 – Hourly Sampling and Presence Modeling: Based on
the composition of the visitor’s age and the hourly visitor counts,
the hourly visitor age composition is sampled. Using the median
dwell time of visitors in the selected POI as the dwell time of all
visitors, we can then infer the visitor count of each age group in
each hour.
Step 3 – Contact Matrix Construction: Assuming that all the
visitors at the same POI and at the same hour made contacts with
each other, we can now compute contact matrices using the hourly
visitor age group compositions. Then, all 168 hourly contact matri-
ces are aggregated to get the contact matrix of the selected POI in
the selected week.

By repeating the above process, we can now compute weekly
contact matrices of different age groups for all available POIs in the
US. Figure 2, 3, and 4 show examples of the contact matrices gener-
ated by the described method for a primary school, a restaurant, and
a gas station near Atlanta, respectively. The code for this approach
is available on https://github.com/onspatial/sigspatial2025-social-
contact-patterns.

5 Experimental Results
Using our methodology, we generate weekly contact matrices for
selected POIs—each reflecting distinct interaction patterns based
on the POI’s function and demographics, with weekly resolution
aligned to the ADVAN data format. As shown in Figure 2, Ocee
Elementary School has a high concentration of visitors in the 0–9
and 50–59 age groups, resulting in the strongest contact intensity
between these two cohorts. This likely captures interactions be-
tween young students and adult staff or parents. We note that this
elementary school has approximately 700 students. If each student
comes into contact with every other student, this would result in
roughly 0.5 million contacts per day. In contrast, the matrix in Fig-
ure 3, representing Nan Thai Fine Dining, displays concentrated
interactions among adults aged 30 and above, which is consistent
with the expected clientele of upscale restaurants. Meanwhile, the
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Figure 2: POI “Ocee Elementary School”
in Johns Creek, GA

Figure 3: POI “Nan Thai Fine Dining” in
Atlanta, GA

Figure 4: POI “Exxon” in Atlanta, GA

Exxon gas station in Figure 4 presents a more diffused contact ma-
trix, with moderate contact across all age groups and no strong
clustering. This pattern reflects the unstructured nature of gas sta-
tion visits, where brief and non-repetitive visits lead to broad but
low-intensity contacts across demographics. Collectively, these re-
sults demonstrate the method’s ability to extract age-based contact
patterns at POI level from mobility traces, capturing venue-specific
demographic differences. We note that the resulting dataset cannot
be shared due to Advan’s data policies.

6 Conclusions and Future Work
This paper presents a novel, scalable framework for generating so-
cial contactmatrices from foot-traffic data, enabling high-resolution,
demographic-aware insights into human interactions at millions
of POIs. By inferring age distributions from home census block
group (CBG) demographics and applying probabilistic sampling,
our method replaces costly surveys with a data-driven, repeatable,
and adaptable solution. The resulting contact matrices offer valu-
able inputs for epidemiological modeling, guiding public health
interventions, and informing strategies for disease prevention and
resource allocation. Additionally, the framework holds significant
potential beyond health, providing actionable intelligence for retail
site selection, marketing optimization, and urban planning.

Despite its strengths, the proposed approach has inherent lim-
itations. Demographic inference is based on CBG-level aggrega-
tion, which can introduce bias in areas with high heterogeneity or
unusual visitor patterns. Additionally, assuming uniform contact
probabilities among co-present individuals overlooks important
factors such as spatial layout, dwell time, and behavioral variation
that influence real-world interactions. The stochastic nature of the
sampling process also introduces variability, particularly affecting
precision in low-traffic or demographically skewed POIs. To miti-
gate these limitations, incorporating alternative data sources with
finer granularity could improve accuracy. Furthermore, optimiza-
tion techniques can be applied to shift the focus toward POI-level
statistics rather than relying solely on CBG-level information. In
addition, the validation of the method is an ongoing process that
requires collecting ground truth data and comparing the results of
the proposed approach with real-world data.
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