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Abstract
Existing methods for anomaly detection often fall short due to their
inability to handle the complexity, heterogeneity, and high dimen-
sionality inherent in real-world mobility data. In this paper, we
propose DeepBayesic, a novel framework that integrates Bayesian
principles with deep neural networks to model the underlying mul-
tivariate distributions from sparse and complex datasets. Unlike tra-
ditional models, DeepBayesic is designed to manage heterogeneous
inputs, accommodating both continuous and categorical data to
provide a more comprehensive understanding of mobility patterns.
The framework features customized neural density estimators and
hybrid architectures, allowing for flexibility in modeling diverse
feature distributions and enabling the use of specialized neural net-
works tailored to different data types. Our approach also leverages
agent embeddings for personalized anomaly detection, enhancing
its ability to distinguish between normal and anomalous behav-
iors for individual agents. We evaluate our approach on several
mobility datasets, demonstrating significant improvements over
state-of-the-art anomaly detection methods. Our results indicate
that incorporating personalization and advanced sequence model-
ing techniques can substantially enhance the ability to detect subtle
and complex anomalies in spatiotemporal event sequences.

CCS Concepts
• Information systems → Location based services; • Comput-
ing methodologies→ Mixture models; Bayesian network models;
Neural networks.
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1 Introduction
How can we gain insights from tracking the movement of human
populations? The exploration of human mobility, encompassing its
dynamics, causes, motivations, and limitations, has been a focus of
study since at least the 19th century, with foundational contribu-
tions such as Ravenstein’s laws of migration [40]. In contemporary
research, this field has advanced significantly through the use of
various positioning technologies, such as GPS, cellular networks,
and WiFi [15, 17, 56]. These technologies enable the detailed anal-
ysis of movement patterns at both individual and societal levels,
providing critical information for professionals in urban planning,
transportation, and public health monitoring [5, 36].

Anomalies in mobility data — unusual or unexpected patterns
of movement — can signify a range of events, from transportation
disruptions to shifts in population behavior caused by emergencies,
pandemics, or large public gatherings. Identifying these anomalies
enables stakeholders to respond effectively, ensuring public health,
optimizing infrastructure, and maintaining urban resilience.

Yet, the analysis of mobility data is fraught with challenges that
complicate the detection of anomalies. Mobility data is often sparse,
with gaps in coverage and missing data points, making it difficult
to establish a clear baseline of normal behavior. Additionally, hu-
man movement patterns are highly complex and influenced by a
myriad of factors, resulting in multivariate dependencies that tradi-
tional models struggle to capture. These complexities, coupled with
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the dynamic nature of human behavior, make it difficult to distin-
guish between true anomalies and normal variability in the data.
Consequently, traditional statistical methods and machine learning
models frequently fail to detect subtle yet significant anomalies.

To effectively detect anomalies in mobility data, it is essential
to first understand the underlying distribution of normal behav-
ior. Recovering these underlying distributions is crucial because
it provides a baseline against which deviations can be measured.
However, this task is inherently challenging due to the intricate
nature of human mobility, which is influenced by a wide array of
variables such as time, agent identity (e.g., individual or vehicle
IDs), points of interest, and social and environmental factors.

For instance, consider the problem of predicting traffic patterns
in a large city. The movement of vehicles is not only dependent on
time of day and location but also on events such as road closures,
public holidays, or weather conditions. Additionally, the identity of
the agent (e.g., individual or vehicle performing activities) is crucial
in understanding normal versus anomalous behavior. For example,
a late-night drive through a typically congested downtown area
might be considered anomalous for a typical commuter but per-
fectly normal for a taxi driver whose work involves frequent trips
at all hours. Similarly, what is considered a normal pattern of move-
ment for a door-to-door salesperson would be highly anomalous
for someone who typically works from home. These examples un-
derscore the necessity of capturing the full complexity of mobility
data, which includes understanding how the variables such as time,
location, and agent ID interact to form the overall distribution of
normal behavior [20].

Existing methods for recovering these underlying distributions
often fall short because they struggle to manage the complexity,
heterogeneity, and high dimensionality of mobility data (See Section
2 for a detailed discussion). To address these challenges, many
models rely on simplifying assumptions, such as treating variables
as independent. However, these assumptions rarely hold true in
real-world mobility data, where variables such as time and location
are deeply interdependent. As a results these models frequently
produce incomplete or inaccurate representation of the underlying
distributions, overlooking critical nuances in the data.

In response to these challenges, we propose DeepBayesic, a novel
framework that integrates Bayesian principles with advanced neu-
ral density estimation techniques to recover the underlying mul-
tivariate distributions from sparse and complex mobility datasets.
Our approach is designed to handle the high dimensionality, hetero-
geneity, and interdependencies inherent in mobility data, provid-
ing a more accurate and comprehensive understanding of normal
behavior. It combines the complementary strengths of Bayesian
theory and neural networks: Bayesian theory offers a probabilistic
framework for integrating prior knowledge and managing uncer-
tainty, while neural networks are well-suited for capturing complex,
high-dimensional relationships within the data.

DeepBayesic employs a cascade of neural density estimators to
model the complex interactions between heterogenous variables
such as time, location, and agent ID. By using a Bayesian framework,
the model captures the full multimodal distribution of possible out-
comes, rather than relying on single-point predictions. This allows
DeepBayesic to identify anomalies that are not only deviations from
the expected outcome but also deviations from the entire range of
normal behavior.

To personalize the model for individual agents (e.g., specific
vehicles, individuals, or groups of individuals with similar socio-
economic demographics), DeepBayesic incorporates agent embed-
dings. These embeddings capture the unique characteristics and
behaviors of different agents, allowing the model to better distin-
guish between normal and anomalous behavior on an individual
or group basis. This personalized approach enhances the model’s
sensitivity to subtle anomalies that might otherwise go unnoticed.

We demonstrate the effectiveness of DeepBayesic through ex-
tensive experiments on multiple mobility datasets, showing that it
outperforms existing anomaly detection methods.

Our contributions can be summarized as follows:

• We introduce DeepBayesic, a novel framework that combines
Bayesian theory with deep neural networks to accurately
recover underlying multivariate distributions from sparse
and complex mobility data.

• We implement a cascade of neural density estimators that
can handle the high dimensionality and complex interdepen-
dencies in mobility data, capturing both simple and complex
anomalies.

• We develop and incorporate deep agent embeddings to per-
sonalize the model, improving its ability to detect anomalies
specific to individual agents.

• We demonstrate the effectiveness of DeepBayesic through
extensive experiments on multiple mobility datasets, show-
casing its superiority over existing baselines in anomaly
detection.

The remainder of this paper is organized as follows. In Section 2,
we discuss the innovations presented in this work within the con-
text of the state of the art in anomaly detection and neural density
estimation, highlighting the key advancements that distinguish our
approach. Section 3 formulates the problem, providing a formal
definition and setting the stage for the methodological develop-
ments that follow. Section 4 details the methodology, describing the
structure and components of the proposed DeepBayesic framework,
including the integration of Bayesian principles, neural density es-
timation, and agent embeddings. In Section 5, we present extensive
experiments conducted on multiple mobility datasets to evaluate
the effectiveness of our approach, comparing its performance with
existing baselines. Finally, Section 6 concludes the paper, summariz-
ing the key findings and discussing potential directions for future
research.

2 Relationship with State-of-the-Art
In this section, we position our proposed framework within the
broader landscape of existing research in the areas of anomaly
detection (Section 2.1) and neural density estimation (Section 2.2).

2.1 Anomaly Detection
Anomaly detection in spatiotemporal data has garnered significant
attention, particularly for identifying irregular patterns in user be-
havior. Existing approaches to anomaly detection in mobility data
can be broadly categorized into clustering-based, distance-based,
reconstruction-based, prediction-based, and density estimation-
based methods. Clustering-based methods group data into clus-
ters and flag anomalies as outliers [27, 31, 39]. These methods
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often assume that normal data forms distinct clusters, an assump-
tion that may not hold true in complex mobility data. Distance-
based methods detect anomalies by measuring deviations from the
norm [4, 21, 34, 43]. While intuitive and straightforward to im-
plement, these approaches heavily rely on the choice of distance
metric — a challenge in complex datasets where different features
may have varying scales or significance. Moreover, they suffer from
the curse of dimensionality, where the effectiveness of distance
metrics diminishes as the number of dimensions increases, making
it difficult to distinguish between normal and anomalous points.
Reconstruction-based methods use models like deep autoencoders to
reconstruct data and identify anomalies based on reconstruction
errors. Although these methods have shown promise [35, 57], they
are prone to overfitting, where the model may learn to perfectly
reconstruct the training data but fail to generalize to new, unseen
data. Additionally, they are sensitive to outliers in the training data,
which can lead the model to incorrectly learn to reconstruct these
anomalies as normal patterns, thereby diminishing its effectiveness
in identifying true anomalies.

Prediction-based methods have been a major focus of anomaly
detection research [22, 24, 29, 35, 44, 50]. These methods forecast
future data points and identify anomalies as deviations from these
predictions. However, existing predictive models [1, 11–14, 16, 19,
30, 32, 33, 42, 51, 52, 54, 55] have severe limitations when forecasting
complex mobility patterns. Typically, these models predict only the
location of visits [51, 52], which limits their utility in detecting
temporal anomalies. While some recent methods have attempted
to model both location and time [9, 53], they often make limiting
assumptions, such as the independence between location and time,
which can affect their predictive accuracy [20].

One of the major drawbacks of prediction-based models is their
reliance on single-point predictions, which can overlook the multi-
modal nature of real-world data distributions. These models typ-
ically generate a single expected outcome, assuming that future
behavior can be represented by a specific predicted value. However,
in reality, the future may involve multiple plausible outcomes, each
with its own probability. For example, in urban mobility, travel time
might vary widely due to factors like traffic conditions or weather,
leading to a multimodal distribution of possible travel times. Single-
point predictions can average out these possibilities, resulting in
inaccurate forecasts and the potential to miss critical anomalies
that arise from these alternative scenarios.

This limitation of prediction-based models underscores the need
for approaches that can capture the full distribution of possible out-
comes rather than just a single expected value. Density estimation-
based methods address this by modeling the entire probability distri-
bution of the data and identifying anomalies as data points that fall
in regions of low probability. These methods are better suited for de-
tecting a broader range of anomalies, including those arising from
complex, multimodal distributions. However, despite their advan-
tages, density-based approaches also face challenges. Traditional
methods, such as kernel density estimation (KDE), can struggle with
high-dimensional data due to the curse of dimensionality, where the
volume of the data space increases exponentially with the number
of dimensions, making it difficult to estimate densities accurately.
Moreover, density estimation methods often require large amounts
of data to model the joint distribution effectively, which can be a

limitation in scenarios with sparse data or missing values. Addi-
tionally, these methods may require careful tuning to balance the
trade-off between bias and variance, where overly smooth density
estimates may miss subtle anomalies, while overly complex models
may overfit the data.

2.2 Neural Density Estimation
Neural networks are widely recognized as universal function ap-
proximators, making them highly effective tools for modeling com-
plex systems. For mobility data analysis, neural density estimators
harness this expressive power to model sequences of multivariate
distributions and stochastic processes, effectively capturing the
intricate patterns of human movement in high-dimensional spaces.
These estimators are especially suited for representing the tem-
poral and spatial dependencies inherent in mobility data, where
each observation can be treated as a sample from a time-varying
distribution. Neural density estimators for mobility analysis can be
categorized based on their approach for handling temporal dynam-
ics and their specific techniques for modeling probability densities.

Continuous-time models offer the advantage of capturing the
fluid nature of mobility patterns. Neural Ordinary Differential Equa-
tions (Neural ODEs) [8] model the continuous evolution of the
system state over time, allowing for the hidden state formulation
between two events. Neural Stochastic Differential Equations (Neu-
ral SDEs) [23] build on this approach by incorporating stochastic
elements, which more effectively capture the inherent randomness
in mobility patterns. Another continuous-time approach, is Neural
Point Processes [37], which excels at modeling the occurrence rates
of sporadic mobility events in continuous time. These models are
capable of estimating temporal densities and may offer tractable
likelihood computation [58], making them particularly suitable
for density estimation tasks in mobility data analysis. In contrast,
discrete-timemodels, such as Autoregressivemodels [38], Recurrent
Neural Networks (RNNs) and Transformer-based architectures [49],
operate on fixed time steps. These discrete-time approaches can be
effectively combined with various density estimation techniques to
provide explicit likelihood computations.

The spatial dimension of mobility data poses unique challenges
for density estimation.Normalizing flows[28, 41] have shown promise
in modeling complex spatial distributions, offering both flexible
modeling capabilities and exact likelihood computation. However,
they can be computationally intensive, especially in high-dimensional
spaces. To address the diverse features often present in mobility
data, various approaches have been proposed. Mixture Density Net-
works [7], such as amixture of Gaussian or Laplace densities [46, 48],
can be used as output layers to enable modeling of complex, mul-
timodal distributions at each time step. Variational Autoencoders
(VAEs) [26] learn latent representations of the data and provide a
lower bound on the likelihood. Another approach, Automatic Inte-
gration [59], learns the density directly as a neural network, offering
faster computation than normalizing flows in low dimensional set-
tings, but it does not scale effectively to higher dimensional outputs.
Recent advancements in Diffusion Models [18] also show promise,
as they can be adapted to provide likelihood estimates through
variants like Variational Diffusion [25]. The choice of model of-
ten requires balancing expressiveness against the computational
tractability of likelihood estimation.
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The proposed DeepBayesic framework is closely related to au-
toregressive models and mixture density networks discussed above,
but it offers several key advantages over existing approaches. First,
it excels in handling heterogeneous inputs by seamlessly integrat-
ing both continuous and categorical data. While most autoregres-
sive models primarily focus on modeling distributions of either
discrete tokens (e.g., LLMs or grid-based locations [35]) or continu-
ous output [58], they often often struggle to handle both types of
data simultaneously. This limitation poses significant challenges
in real-world applications, such as mobility data analysis, where
categorical inputs — such as types of points of interest (POI) —
provide crucial context and are essential for accurate modeling.
Another critical advantage of DeepBayesic lies in its tailored mod-
eling of diverse feature distributions. In many datasets, different
features follow significantly different distributions. For example,
arrival times might follow a multimodal normal mixture, while
duration could adhere to a log-normal distribution with a strong
left skewness. Many autoregressive models treat all features uni-
formly, which can lead to oversights and inaccuracies by ignoring
these important distributional nuances. DeepBayesic addresses this
challenge by allowing for the customization of neural density esti-
mators tailored to the specific characteristics of each conditional
distribution. Unlike existing autoregressive models, which often
rely on a shared architecture across all features, DeepBayesic en-
ables the integration of different types of neural networks, such as
recurrent networks for modeling point-of-interest sequences and
transformer networks for handling stay durations. This modular
approach enables optimization of the architecture for the specific
requirements of each data type. By customizing each estimator to
capture the unique complexities of the data, DeepBayesic provides
a more robust and adaptable framework for mobility data analysis.

3 Problem Statement
Our study focuses on finding anomalies in large-scale urban mobil-
ity sequences. A mobility sequence represents a series of recorded
movements or activities of an agent, such as an individual or a
vehicle, over time.Let 𝑃 denote the total number of agents, where
each agent 𝑧, indexed by 𝑧 ∈ {1, . . . , 𝑃}, is observed through a
mobility sequence denoted by 𝑿 = [𝑋1, ..., 𝑋𝑛]. Each observa-
tion 𝑋𝑖 corresponds to a specific event or activity characterized
by a set of attributes such as speed, location, time, and the type
of visited place. Formally, each observation 𝑋𝑖 is represented as:
𝑋𝑖 = (𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3, . . . , 𝑎𝑖,𝑚) where 𝑎𝑖, 𝑗 denotes the 𝑗𝑡ℎ attribute
of 𝑋𝑖 . Anomaly detection is achieved by estimating the probability
distribution of these observations and identifying instances that
significantly deviate from the estimated distribution.

To estimate the probability distribution of the observation 𝑿 for
a given agent 𝑧, denoted as 𝑃 (𝑿 |𝑧), we aim to estimate the joint dis-
tribution of the attributes that constitute 𝑿 . By applying Bayesian
inference and the chain rule of probability, the probability distri-
bution 𝑃 (𝑿 |𝑧) can be decomposed into a product of conditional
probabilities:

𝑃 (𝑿 | 𝑧) = 𝑃 (𝑎:,1, 𝑎:,2, . . . , 𝑎:, 𝑗 | 𝑧)
= 𝑃 (𝑎:,1 | 𝑧) × 𝑃 (𝑎:,2 | 𝑎:,1, 𝑧) × · · ·
× 𝑃 (𝑎:, 𝑗 | 𝑎:,1, 𝑎:,2, . . . , 𝑎:, 𝑗−1, 𝑧)

(1)

Each term in this sequence of conditional probabilities can be
estimated using a suitable density estimator, enabling us to capture
the complex dependencies between attributes effectively.

In this study, we concentrate on three key attributes for each
observation that are particularly informative for identifying devi-
ations from typical behavior patterns: arrival time 𝑎𝑖,1 := 𝑡𝑖 , stay
duration 𝑎𝑖,2 := 𝑑𝑖 , and POI type 𝑎𝑖,3 := 𝑐𝑖 . Thus, each observation
𝑋𝑖 of agent 𝑧 is defined as:

𝑋𝑖 = (𝑐𝑖 , 𝑡𝑖 , 𝑑𝑖 ) (2)
For each agent 𝑧 in our dataset, there is an associated mobility se-

quence, 𝑿𝒕𝒓𝒂𝒊𝒏 , which predominantly consists of normal activities.
These sequences collectively constitute the training dataset used to
learn the underlying probability distributions in an unsupervised
fashion. Our goal in the anomaly detection task is to assign an
anomaly score 𝑠 to each observation in a separate set of mobility
sequences, 𝑿𝒕𝒆𝒔𝒕 . According to Eq. 1, the probability distribution
𝑃 (𝑿 | 𝑧) can be rewritten as:

𝑃 (𝑿 | 𝑧) = 𝑃 (𝑑, 𝑐, 𝑡 | 𝑧)
= 𝑃 (𝑡 | 𝑧) 𝑃 (𝑐 | 𝑡, 𝑧) 𝑃 (𝑑 | 𝑐, 𝑡, 𝑧) (3)

Given an estimate of the probability distribution 𝑃 (𝑿 𝒕𝒓𝒂𝒊𝒏 | 𝑧),
the anomaly score for each observation in 𝑿𝒕𝒆𝒔𝒕 can be determined
by calculating 1 − 𝑃 (𝑿 𝒕𝒆𝒔𝒕 |𝑧).

4 Method
Given an agent 𝑧, estimating the probability distribution of the
associated mobility sequence 𝑿𝒕𝒓𝒂𝒊𝒏 is challenging due to the typ-
ically sparse data available for individual agents. To address this
challenge, we employ an agent embedding model to extract latent
features from the observed activities of all agents, clustering those
with similar behaviors closer together in the latent space. This ap-
proach enables us to estimate 𝑃 (𝑿 | ℎ), where ℎ is the learned
agent embedding, rather than directly estimating 𝑃 (𝑿 | 𝑧) from
sparse data. Following Eq. 3, given an agent embedding ℎ, we esti-
mate the probability distribution of each observed sequence, 𝑿 , by
sequentially estimating the conditional probability distributions of
its attributes, the arrival time (𝑃 (𝑡 | ℎ)), the type of point of interest
(𝑃 (𝑐 | 𝑡, ℎ)), and the stay duration (𝑃 (𝑑 | 𝑐, 𝑡, ℎ)).

The subsequent sections will detail the process of obtaining agent
representations and the implementation of the three conditional
probability distributions.

4.1 Agent Embedding Auto-Encoder
Fig. 1 illustrates the architecture of the agent embedding auto-
encoder. We employ a transformer-based auto-encoder, similar to
MotionClip [47], to map each staypoint sequence to an agent embed-
ding vector. This model is trained to project the staypoint sequence
𝑿 of an agent 𝑧 into a latent vector ℎ (the agent embedding vector)
while simultaneously reconstructing the original sequence. The
details of each component of this agent embedding auto-encoder
are provided in the following subsections.

4.1.1 Sequence Encoder. We begin by encoding each staypoint
𝑋𝑖 = (𝑐𝑖 , 𝑡𝑖 , 𝑑𝑖 ) into an encoded space 𝐸𝑖 to normalize the data
representation. Specifically, we use one-hot encoding for the POI
type and use min-max normalization for arrival time and stay dura-
tion. A learnable token sequence 𝐸0, sampled from standard normal
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Figure 1: Agent embedding auto-encoder. A Transformer
Encoder is trained to project an input feature sequence 𝑿 ,
encoded by a Sequence Encoder and prefixed by learnable
token 𝐸0, into its latent representation ℎ. Simultaneously, a
Transformer Decoder is trained to reconstruct the encoded
sequence from the latent representation ℎ and the standard
positional encoding 𝑷𝑬 .

distribution, is inserted at the beginning of the encoded sequence,
following the approach used in [47]. The input to the transformer
encoder is denoted as 𝐸 = [𝐸0, 𝐸1, ..., 𝐸𝑛]. Further details on the
encoding process can be found in Section 5.1.2.

4.1.2 Transformer Encoder. The transformer encoder maps the
encoded staypoint sequence 𝐸 to a latent representation ℎ. First,
the encoded sequence is projected into the encoder’s dimension
by linear projection. Next, a standard positional embedding is ap-
plied to the projected sequence. The latent representation ℎ is then
obtained as the first output of the encoder, with the remaining
sequence outputs discarded.

4.1.3 Transformer Decoder. The latent representation ℎ is fed to
the transformer decoder as key and value, while the positional en-
coding is inputted to the transformer decoder as query sequence.
Subsequently, the transformer decoder predicts an encoded stay-
point sequence 𝐸′.

4.1.4 Loss Function of the Agent Embedding Auto-Encoder. The
agent embedding auto-encoder is trained by minimizing the recon-
struction loss, defined as the mean squared error between the input
sequence 𝐸 and the reconstructed output sequence 𝐸′. Specifically,
the loss function is given by:

Lae =
1

𝑛 ∗ |𝐸 |

𝑛∑︁
𝑖=1

∥𝐸𝑖 − 𝐸𝑖 ∥2 (4)

4.2 Joint Distribution Estimation
In this section, we provide a detailed explaination of the estimation
process for the joint probability distribution 𝑃 (𝑋 | ℎ), as outlined
in Section 3. The pipeline for this process is illustrated in Fig. 2.

4.2.1 Arrival Time Probability Estimation. To estimate the prob-
ability distribution of arrival times, 𝑃 (𝑡 |ℎ), for a given agent, we
employ a kernel-based Gaussian mixture model (GMM), denoted as
𝑓𝑡 (ℎ). This model is trained on the arrival time sequence observed
during the training period. The estimated probability is defined as:

𝑃 (𝑡 | ℎ) := 𝑓𝑡 (ℎ) (5)
Since arrival times are inherently non-negative, a clipping func-

tion is applied to ensure that all estimated arrival times remain
within valid bounds.

4.2.2 POI Type Probability Estimation. Given the agent embedding
ℎ and arrival time 𝑡 , we use a Recurrent Neural Network (RNN),
denoted by 𝑓𝑃𝑂𝐼 , to estimate the probability distribution over the
POI type 𝑐 . We chose an RNN architecture because it is particularly
effective at handling sequential data and capturing temporal depen-
dencies. After obtaining the hidden state vector g = (𝑔1, . . . , 𝑔𝑛)
from the RNN, we apply a linear projection followed by a softmax
function to g to predict the probability distribution over the discrete
POI types:

𝑃 (𝑐 | 𝑡, ℎ ) = softmax(Wg + b) (6)
where W is the weight matrix and b is the bias vector of the linear
projection layer. The softmax function is defined as:

softmax(𝑦𝑖 ) =
exp(𝑦𝑖 )∑𝐾
𝑗=1 exp(𝑦 𝑗 )

where 𝑦𝑖 is the 𝑖-th element of the output vector, and 𝐾 is the
number of POI types.

4.2.3 Stay Duration Probability Estimation. Given the agent em-
beddingℎ, arrival time 𝑡 , and POI type 𝑐 , we use a transformer-based
neural density function, 𝑓𝑑 , to model the probability distribution
of stay duration 𝑑 . As discussed in Section 2.2, a neural density
function 𝑓 is a neural network that implicitly parameterizes the
variables to be estimated. This approach is especially well-suited
for handling high-dimensional datasets with sparse samples, a com-
mon characteristic of activity sequence data. When combined with
Bayesian inference, it offers a robust framework for incorporating
and updating prior knowledge as more data attributes are observed.

To model the distribution of stay duration, 𝑃 (𝑑 | 𝑐, 𝑡, ℎ), we
represent it using a Gaussian Mixture Model (GMM), which can be
expressed as:

𝑃 (𝑑 | 𝑐, 𝑡, ℎ) :=
∑︁
𝑘

𝑚𝑘𝑝N (𝑑 ; 𝜇𝑘 , 𝜎𝑘 ) (7)

where:

𝑝N (𝑑 ; 𝜇𝑘 , 𝜎𝑘 ) =
1

𝜎𝑘
√
2𝜋

exp

(
− (𝑑 − 𝜇𝑘 )2

2𝜎2
𝑘

)
(8)

The mixture weights 𝒎 are estimated by the neural density
function:

𝑓𝑑 : 𝑐, 𝑡, ℎ → m (9)
A softmax function is applied to ensure that the mixture weights

𝒎 sum to 1. For a given observation of stay duration𝑑 , the likelihood
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Figure 2: DeepBayesic pipeline. The agent embedding ℎ is fed into three modules: Arrival Time Estimation, POI Type Estimation,
and Stay Duration Estimation. Each module uses ℎ along with other relevant inputs to estimate the corresponding conditional
probability distributions, which are then integrated into a joint probability model. Finally, the agent embedding ℎ and an
observation 𝑥 are input into the joint probability model to calculate anomaly score 𝑠.

under the model 𝑝𝐺𝑀 is maximized by minimizing its negative log-
likelihood, forming the basis for the training loss function for 𝑓𝑑 :

L𝑓𝑑 (𝑑) = − log

[∑︁
𝑘

𝑚𝑘𝑝N (𝑑 ; 𝜇𝑘 , 𝜎𝑘 )
]

(10)

The transformer-based neural density function facilitates at-
tention mechanisms across ℎ, 𝑡 , and 𝑐 , allowing for an adaptive
representation that captures complex dependencies between these
variables.

4.2.4 Neural Density Function Loss. Using the chain rule of prob-
ability (Eq. 3), the loss function for training the joint distribution
estimation function is defined as:

Lf = −
∑︁
𝑐,𝑑

[
log 𝑃 (𝑐 | 𝑡, ℎ) + log 𝑃 (𝑑 | 𝑐, 𝑡, ℎ)

]
(11)

4.2.5 Total loss. The total loss function is obtained by combin-
ing the agent embedding autoencoder loss (Eq. 4) with the neural
density function loss (Eq. 11). The total loss is:

Ltotal = Lae + Lf

=
1

𝑛 ∗ |𝐸 |

𝑛∑︁
𝑖=1

∥𝐸𝑖 − 𝐸𝑖 ∥2 −
∑︁
𝑐,𝑑

[
log 𝑃 (𝑐 | 𝑡, 𝑧) + log 𝑃 (𝑑 | 𝑐, 𝑡, 𝑧)

]
(12)

4.3 Anomaly Score Assignment
Given the agent embedding ℎ, the inferred staypoint sequence
𝑋 𝑖𝑛𝑓 𝑒𝑟 , and probability estimates 𝑃 (𝑡 | ℎ), 𝑃 (𝑐 | 𝑡, ℎ), and 𝑃 (𝑑 | 𝑐, 𝑡, ℎ),
we first compute the joint probability 𝑃 (𝑑𝑖𝑛𝑓 𝑒𝑟 , 𝑐𝑖𝑛𝑓 𝑒𝑟 , 𝑡𝑖𝑛𝑓 𝑒𝑟 | ℎ)
as follows:

𝑃 (𝑑, 𝑐, 𝑡 | ℎ) = CLIP𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑡𝑖𝑚𝑒
(
𝑃 (𝑡 | ℎ)

)
×

CLIP𝑃𝑂𝐼_𝑡𝑦𝑝𝑒
(
𝑃 (𝑐 | 𝑡, ℎ)

)
×

CLIP𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(
𝑃 (𝑑 | 𝑐, 𝑡, ℎ)

) (13)

where 𝐶𝐿𝐼𝑃 denotes a clipping function applied to ensure valid
values. The anomaly score 𝑠 is then computed as:

𝑠 = 1 − 𝑃 (𝑑, 𝑐, 𝑡 | ℎ). (14)

5 Experiments and Results
In this section, we present the experiments conducted to evaluate
the performance of the proposed DeepBayesic framework. Our
experiments (Section 5.1) are designed to assess the model’s effec-
tiveness in anomaly detection (Section 5.2), its ability to personalize
predictions for individual agents (Section 5.3), and the impact of
various model components on overall performance (Section 5.4).

5.1 Experimental Setup
5.1.1 Datasets. To evaluate the performance of our proposed ap-
proach, we conducted experiments using two synthetic mobility
datasets, NUMOSIM-LA [45] and Urban Anomalies [2, 3] that sim-
ulate human movement patterns in urban environments.

NUMOSIM-LA1: NUMOSIM is a synthetic dataset designed to
simulate human mobility patterns within urban environments[45].
The initial release, NUMOSIM-LA, focuses on the Los Angeles area
and is divided into four weeks for training and four weeks for
testing. It contains data for 200,000 agents, of which 381 exhibit
various types of anomalous behaviors during the test period. These

1The NUMOSIM-LA dataset can be accessed at: https://osf.io/sjyfr/.

https://osf.io/sjyfr/
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behaviors range from isolated events that disrupt an agent’s typi-
cal sequence of activities to recurring patterns that deviate from
the norm regularly. At the staypoint level, the dataset comprise
a total of 16,667,273 staypoints, with 3,468 labeled as anomalous.
The anomaly prevalence rates are 0.19% at the agent level and
0.0208% at the staypoint level. This distribution reflects the sig-
nificant imbalance typically encountered in real-world anomaly
detection problems. Additionally, NUMOSIM-LA provides several
benchmarks from state-of-the-art methods, making it a valuable
resource for evaluating the effectiveness of the DeepBayesic model
against current standards.

Urban Anomalies2: The Urban Anomalies dataset [2, 3] in-
cludes synthetic simulations of urban environments in Atlanta and
Berlin, each containing mobility sequences for 1000 agents, some
of whom are affected by a simulated disease that causes them to
eat more frequently, reduce social interactions, and stop going to
work. The anomaly prevalence rates are 12% at the agent level and
12.3% at the staypoint level. Each mobility sequence includes one
month of normal activities followed by a period of variable length
with injected anomalies. The anomalies fall into four categories: i)
Hunger : Agents visit restaurants more frequently, ii) Social: Agents
visit random locations instead of meeting friends, iii) Work: Agents
stop going to work, and iv) Combined: A mix of all the above anom-
alies. The dataset provides comprehensive information, including
agent trajectories, staypoints, and social links, offering a rich set of
features for evaluating anomaly detection methods.

5.1.2 Preprocessing. For each dataset, we computed the following
features for each staypoint:

• Time: Epoch time (day/hour)
• Location: Latitude and longitude
• Duration: Length of stay
• POI type: Type of point of interest

Epoch time was normalized to center aroundMonday, combining
both day and hour values. Urban Anomalies dataset directly pro-
vides POI type as an attribute. For NUMOSIM-LA, we determined
POI type of each stay point by mapping it to the nearest available
POI within a 15-meter radius, or labeling it as ’unknown’ when no
POI was identified within this distance. Each baseline model was
adapted to support the NUMOSIM and Urban Anomalies datasets
(See [45] for details of these modified pipelines).

5.1.3 Baseline. We evaluate the performance of our anomaly de-
tection pipeline against the following baseline methods:

RioBusData [6]: A convolutional neural network designed to
detect outlier trajectories in the bus routes of Rio de Janeiro. The
input sequence consists of agent IDs and all the features listed in
Section 5.1.2. Location feature was represented by raw geographic
latitudes and longitudes. The model’s output was modified to pre-
dict anomalies in agent behaviors instead of bus routes.

Spatial-Temporal Outlier Detector (STOD) [10]: A GRU-
based neural network that detects anomalies in bus trajectories
using GPS points from regular bus routes. This model utilizes all
the features in Section 5.1.2. An embedding layer was used to en-
code latitudes and longitudes into tokens. The H3 resolution used
in Geo embedding creation was set to 12.

2The Urban Anomalies dataset can be accessed at: https://osf.io/dg6t3/.

Gaussian Mixture Variational Sequence AutoEncoder (GM-
VSAE) [35]: A VAE-basedmodel designed to detect trajectory anom-
alies through trajectory generation. The latitudes and longitudes
were converted into grid indices, and were used as the only input to
the model. This model is limited to detecting anomalies at the agent
level, without providing insights into anomalies at the stay-point
level.

5.1.4 Metrics. To evaluate the performance of our approach, we
use the following metrics:

• Area Under the Precision-Recall Curve (AUPR)
• Area Under the Receiver Operating Characteristic curve (AU-
ROC)

• Maximum F1-Score
• Average Precision (AP)

These standard metrics allow us to assess the model’s perfor-
mance across all possible decision thresholds, providing a com-
prehensive evaluation of anomaly detection, especially in highly
imbalanced datasets where fixed thresholds may not generalize
well.

5.2 Anomaly Detection Results
Our evaluation focuses on detecting anomalies at both the staypoint
and agent levels across the NUMOSIM-LA, Urban Anomalies-Berlin,
and Urban Anomalies-Atlanta datasets. For agent-level anomaly
detection, anomaly scores are computed by taking the maximum
score among all associated staypoints for each agent. This approach
effectively highlights the most anomalous behavior within each
agent’s trajectory, enabling more accurate identification of signifi-
cant deviations.

We compared the performance of our anomaly detection pipeline
against all baseline methods. As shown in Table 1 and the ROC
curves in Figure 3, our method, DeepBayesic, consistently outper-
forms the baselines across multiple metrics.

Agent-Level Anomaly Detection: The ROC curves for agent-
level detection, shown in Figure 3 (a-c), reveal a clear improvement
of our method over the baselines, especially on the NUMOSIM-LA
dataset. The curves indicate that our approach effectively identifies
a higher number of true positives while maintaining a low rate
of false positives. This superior performance can be attributed, in
part, to the integration of personalized agent embeddings, which
enable our model to more accurately capture individual behavioral
patterns, even with sparse data points. We further explore this
hypothesis in an ablation study presented in Section (5.4).

Staypoint Level Anomaly Detection: The ROC curves for
staypoint-level anomaly detection, depicted in Figure 3 (d-f), demon-
strate that while our method still outperforms the baselines, the
overall scores are smaller compared to agent-level detection. This
is due to the inherent challenges in detecting anomalies at a finer
granularity, where the model must identify deviations in behavior
at the level of individual staypoints. Additionally, since agent-level
anomaly detection aggregates results from staypoint-level detec-
tions, it can mitigate the impact of false positives at the staypoint
level.

Max F1-Score and Precision:As shown in Table 1 DeepBayesic
consistently achieves the highest AUPR and AUROC scores across
the datasets. Notably, on the NUMOSIM-LA dataset, the AUPR
scores for the RIOBus and STOD baselines near zero, and their

https://osf.io/dg6t3/
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Table 1: Performance of Our Method and Baseline Methods on NUMOSIM-LA, Urban Anomalies-Berlin, and Urban Anomalies-
Atlanta Datasets. The performance metrics (AUPR, AUROC, Precision, and Max F1-Score) are reported for both agent-level
and staypoint-level anomaly detection tasks, with the agent-level metrics listed first, followed by the staypoint-level metrics,
separated by a ‘/’ within each cell. For GM-VSAE, only agent-level metrics are available.

Method Dataset AUPR AUROC Precision Max F1-Score
DeepBayesic NUMOSIM-LA 1.21% / 0.42% 72.58% / 65.98% 1.91e-03 / 2.11e-04 5.23e-02 / 3.74e-02

Urban Anomalies-Berlin 16.54% / 17.71% 60.58% / 55.93% 1.20e-01 / 1.28e-01 2.52e-01 / 2.25e-01
Urban Anomalies-Atlanta 16.12% / 16.70% 60.04% / 54.64% 1.20e-01 / 1.26e-01 2.52e-01 / 2.23e-01

RIO Bus NUMOSIM-LA 0.16% / 0.02% 50.17% / 50.55% 1.64e-03 / 1.89e-04 3.29e-03 / 3.82e-04
Urban Anomalies-Berlin 11.91% / 12.36% 49.81% / 50.75% 1.20e-01 / 1.23e-01 2.17e-01 / 2.21e-01
Urban Anomalies-Atlanta 13.61% / 14.87% 55.36% / 55.31% 1.20e-01 / 1.25e-01 2.34e-01 / 2.22e-01

STOD NUMOSIM-LA 0.19% / 0.03% 51.81% / 59.44% 1.82e-03 / 2.41e-04 4.08e-03 / 3.83e-03
Urban Anomalies-Berlin 14.64% / 13.98% 52.11% / 53.29% 1.16e-01 / 1.22e-01 2.24e-01 / 2.32e-01
Urban Anomalies-Atlanta 13.02% / 13.98% 52.25% / 53.18% 1.28e-01 / 1.37e-01 2.19e-01 / 2.29e-01

GM-VSAE NUMOSIM-LA 0.19% 50.66% 1.62e-03 4.36e-03
Urban Anomalies-Berlin 11.28% 47.29% 9.68e-02 2.18e-01
Urban Anomalies-Atlanta 11.91% 50.14% 1.33e-01 2.20e-01

(a) NUMOSIM-LA (Agent) (b) Urban Anomalies-Berlin (Agent) (c) Urban Anomalies-Atlanta (Agent)

(d) NUMOSIM-LA (Staypoint) (e) Urban Anomalies-Berlin (Staypoint) (f) Urban Anomalies-Atlanta (Staypoint)

Figure 3: ROC curves for anomaly detection performance across different datasets and levels of granularity. The top row (a-c)
shows the ROC curves for agent-level anomaly detection, while the bottom row (d-f) shows the ROC curves for staypoint-level
anomaly detection. Our method, DeepBayesic, is represented in red.

AUROC scores hover around 50%, suggesting performance close
to that of a random classifier. In contrast, DeepBayesic achieves
significantly better results.

Furthermore, DeepBayesic also obtains the highest Max F1-
scores at both the agent and staypoint level on the NUMOSIM-LA
dataset, while RIOBus and STOD record much lower Max-F1 scores.

Although F1-Score and precision are less informative in highly im-
balanced datasets such as NUMOSIM-LA and Outliers-Berlin, our
model’s performance in these metrics indicates that it outperforms
the baseline models.

Overall, our model demonstrates strong performance, especially
at the agent level, where the use of personalized embeddings and
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the DeepBayesic framework enables it to detect subtle anomalies
effectively. Our method also remains competitive to the baseline at
the staypoint level.

To better understand the reasons behind DeepBayesic’s perfor-
mance, we further analyzed the prediction outcomes across different
agents in Section 5.3 and conducted a comprehensive ablation study
in Section 5.4 to examine the contributions of each module to the
overall performance .

5.3 Impact of Personalization on Prediction
Personalization plays a central role in enhancing the prediction
accuracy of our model. By incorporating personalized agent em-
beddings, the model captures the unique behavioral patterns of
individual agents and tailors its predictions accordingly, thereby
improving the detection of subtle anomalies that may be overlooked
by a generalized model.

To assess the effectiveness of personalization, we visualize the
predicted conditional distributions of both arrival times and dura-
tions for multiple agents. These visualizations, presented in Figures
4a and 4b, highlight the differences in density patterns among
agents.

Figure 4a shows the predicted arrival time distributions for three
distinct agents. The personalized embeddings capture unique pat-
terns for each agent: Agent 1 (blue) exhibits a bimodal distribution
with peaks around 08:00 and 14:00, suggesting a student with morn-
ing and afternoon classes; Agent 2 (orange) displays a strong peak at
09:00 and a smaller peak at 18:00, indicative of a typical work sched-
ule; Agent 3 (yellow) shows a more uniform distribution throughout
the day, representing an agent with less structured routine.

Figure 4b provides deeper insight into the model’s personaliza-
tion capabilities by focusing on the duration predictions for two
example agents: a student and a non-student. The heatmaps reveal
distinct patterns for school and recreation POI types: The student
agent typically attends school in the morning, spending 6-7 hours
on campus, while the non-student agent rarely visits school and
spends significantly less time there. For recreation activities, the
student agent usually spends shorter periods in the afternoon and
evening, whereas the non-student agent’s recreation time is more
evenly distributed, indicating a more flexible schedule.

These visualizations confirm that the model effectively differen-
tiates between agents based on their unique patterns, leading to
more accurate anomaly detection. For instance, agents who typi-
cally follow regular routes and schedules are easily distinguished
from those with more erratic behaviors, allowing the model to
detect deviations from expected behavior more precisely in both
cases.

5.4 Ablation Study: Impact of Model
Components

To assess the contribution of each component in our pipeline, we
conducted an ablation study by systematically removing one com-
ponent at a time and evaluating the pipeline’s performance using
the metrics introduced in Section 5.1.4.

Table 2 summarizes the results of this ablation study for both
NUMOSIM-LA and Urban Anomalies datasets, highlighting the per-
formance degradation observed when each component is excluded
from the pipeline. The results show that the most significant drop

(a) Predicted Arrival Time Distribution

(b) Predicted Duration Distribution (Student vs Non-student)

Figure 4: Visualization of (a) the predicted arrival time distri-
bution across multiple agents and (b) the predicted duration
distribution conditioned on agent embedding, arrival time,
and POI types (blue for school, orange for recreation) for a
student agent and a non-student agent.

in performance occurs when the agent embedding is removed: the
agent-level AUPR decreases from 1.21% to 0.01% on the NUMOSIM-
LA dataset, from 16.54% to 10.47% on the Urban Anomalies-Berlin
dataset, and from 16.12% to 6.43% on the Urban Anomalies-Atlanta
dataset. Similar declines are observed across other metrics, under-
scoring the critical role of agent embedding in model performance.

Additionally, removing the arrival time estimation model, the
POI type estimation model, or the duration estimation model also
leads to a decrease in performance, indicating that each of these
components contributes significantly to the overall effectiveness of
the model.

5.5 Visit Rate Analysis
The NUMOSIM paper [45] demonstrated that a simple visit rate
model — tracking the frequency of visits to various points of inter-
est (POIs) — can outperform many existing baselines in detecting
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Table 2: Ablation Study Results for Agent-Level and Staypoint-Level Detection onNUMOSIM-LA andUrbanAnomaliesS-BERLIN
Datasets. The results for agent-level and staypoint-level are reported together, separated by a ‘/’ within each cell.

Configuration Dataset AUPR AUROC
Full Pipeline NUMOSIM-LA 1.21% / 0.42% 72.58% / 65.98%

Urban Anomalies-BERLIN 16.54% / 17.71% 60.58% / 55.93%
Urban Anomalies-ATLANTA 16.12% / 16.70% 60.04% / 54.64%

Without Arrival Time Prediction NUMOSIM-LA 0.94% / 0.29% 70.17% / 60.87%
Urban Anomalies-BERLIN 14.52% / 12.47% 58.16% / 54.13%
Urban Anomalies-ATLANTA 10.89% / 14.25% 58.12% / 52.91%

Without POI Type Prediction NUMOSIM-LA 0.85% / 0.31% 66.82% / 55.41%
Urban Anomalies-BERLIN 13.37% / 11.59% 55.62% / 52.79%
Urban Anomalies-ATLANTA 0.76% / 13.02% 54.74% / 58.62%

Without Duration Prediction NUMOSIM-LA 0.76% / 0.28% 65.09% / 51.88%
Urban Anomalies-BERLIN 12.08% / 10.42% 52.94% / 51.03%
Urban Anomalies-ATLANTA 8.66% / 12.50% 53.42% / 52.15%

Without Agent Embedding NUMOSIM-LA 0.01% / 0.01% 50.88% / 52.32%
Urban Anomalies-BERLIN 10.47% / 8.19% 49.83% / 52.69%
Urban Anomalies-ATLANTA 6.43% / 10.11% 51.97% / 50.83%

Table 3: Results of DeepBayesic + Visit Rate Incorporation on Agent-Level Detection across NUMOSIM-LA, Urban Anomalies-
Berlin, and Urban Anomalies-Atlanta Datasets. The performance metrics (AUPR, AUROC, Precision, and Max F1 Score) are
reported for agent-level anomaly detection tasks.

Dataset Method AUPR AUROC Precision Max F1 Score

NUMOSIM-LA Visit Rate Baseline [45] 1.64% 64.6% - -
DeepBayesic + Visit Rate 5.81% 66.17% 4.34e-01 1.63e-01

Urban Anomalies-Berlin DeepBayesic + Visit Rate 36.37% 71.32% 1.00e+00 3.83e-01
Urban Anomalies-Atlanta DeepBayesic + Visit Rate 41.38% 77.38% 9.17e-01 4.53e-01

anomalies. We chose not to incorporate the visit rate directly into
our main model to ensure a fair comparison with other baseline
methods that do not utilize this additional knowledge. This ap-
proach allows the evaluation and comparisons in Section 5.2 to
focus solely on the core concepts presented in the paper, rather
than on specific attributes.

However, for completeness, we integrated the visit rate attribute
into our model and compared its performance against the baseline
provided in the original NUMOSIM paper. The visit rate model
computes anomaly scores by comparing the observed visit rate
between the training and testing periods, normalized by the stan-
dard deviation observed during training. To integrate this into our
model, we normalize the computed anomaly scores between 0 and
1 and multiply them with the final anomaly scores produced by our
framework, ensuring that the visit rate contributes proportionally
to the overall anomaly score.

The impact of incorporating the visit rate into our framework is
summarized in Table 3, wherewe report the performancemetrics for
the NUMOSIM-LA, Urban Anomalies-Berlin, and Urban Anomalies-
Atlanta datasets. The table includes only AUPR and AUROC for the
baseline visit rate model as these are the only metrics provided in
the original paper. Notably, our approach significantly surpass the
Visit Rate Baseline on agent level on NUMOSIM-LA dataset. It also
surpasses DeepBayesic (without incorporating visit rate) on Urban
Anomalies-Berlin and Urban Anomalies-Atlanta datasets. These
results highlight its effectiveness in detecting subtle anomalies.

6 Conclusion
In conclusion, DeepBayesic represents a return to foundational prin-
ciples, demonstrating that by combining the strengths of Bayesian
theory with advanced neural density estimation techniques, we
can develop powerful, interpretable, and effective solutions for spa-
tiotemporal anomaly detection. Our approach also highlights the
importance of personalized modeling in capturing the unique be-
havioral patterns of individuals in mobility data. By incorporating
personalization through learned agent embeddings, the model is
able to detect subtle and context-specific anomalies, even in sparse
datasets. This integrated approach ensures both robustness and
accuracy while providing a solid foundation for future enhance-
ments.
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