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Abstract
Identifying anomalous human spatial trajectory patterns can in-

dicate dynamic changes in mobility behavior with applications in

domains like infectious disease monitoring and elderly care. Recent

advancements in large language models (LLMs) have demonstrated

their ability to reason in a manner akin to humans. This presents

significant potential for analyzing temporal patterns in human mo-

bility. In this paper, we conduct empirical studies to assess the

capabilities of leading LLMs like GPT-4 and Claude-2 in detecting

anomalous behaviors from mobility data, by comparing to special-

ized methods. Our key findings demonstrate that LLMs can attain

reasonable anomaly detection performance even without any spe-

cific cues. In addition, providing contextual clues about potential

irregularities could further enhances their prediction efficacy. More-

over, LLMs can provide reasonable explanations for their judgments,

thereby improving transparency. Our work provides insights on

the strengths and limitations of LLMs for human spatial trajectory

analysis.
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1 Introduction
The widespread adoption of location-enabled mobile devices has led

to a massive collection of human mobility data [24, 29], comprising

diverse trajectory types from individual app usages to public trans-

portation systems. Thesemobility traces can bemodeled as dynamic

graphs, representing sequences of location visits with associated
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semantics [25]. Analyzing these dynamic graphs enables valuable

insights for applications like transportation mode classification and

detecting spatiotemporal patterns [7, 10, 14, 19, 22, 31, 36, 39, 42]. A

particularly difficult task is identifying anomalous mobility patterns

within an individual’s semantic trajectories, where the trajectory

significantly deviates from their historical patterns. Finding such

anomalous patterns of individuals may indicate a change in behav-

ior which has many important applications. For instance, infectious

disease monitoring [16, 27, 40] or tracking elderly behaviors [30].

In recent times, there has been a surge in progress with large

language models (LLMs) [21, 26] like Transformers [34], BERT [12],

GPT [11], among others. These LLMs act as foundational models,

which can be easily adapted for various downstream applications

with minimal adjustments [11, 17, 21, 41]. Notably, breakthroughs

in design and training techniques have enabled emerging abilities

in LLMs, distinguishing cutting-edge models like GPT-3.5 [11],

GPT-4 [3], Claude-2 [8], BARD [1], LlaMA [32], and LlaMA-2 [33]

from earlier versions. For example, features such as in-context

training [23] and zero-shot learning [17, 35] allow these models to

adapt to tasks they were not explicitly trained for.

Despite the remarkable progress LLMs have made in diverse NLP

tasks like question answering (QA) and machine translation, their

potential in analyzing human mobility patterns remains largely un-

explored. Human mobility data, unlike typical language sequences,

presents with intricate spatial-temporal dynamics and rich topolog-

ical connections between entities. Detecting anomalous behaviors

are especially difficult due to the intrinsic property of unknown

nature of anomalies. Existing methods typically rely on creating

hand-crafted features such as the total traveled distance and use

heuristic rule to determine outliers, which limits their capability to

generalize effectively to detect unseen outlier patterns. In contrast,

LLMs has natural advantage since they can directly perceive natural

language input. As LLMs have shown powerful reasoning ability

and generalization capabilities directly from the input prompt, it be-

comes intriguing to assess to what extent LLMs can detect diverse

anomaly behaviors under the human mobility patterns.

To systematically study the capabilities of LLMs on detecting

outliers (anomalies) in human mobility trajectories, we conduct

a series of empirical experiments with leading LLMs on diverse

datasets. By comparing their performance to specialized human

mobility anomaly detection methods, we aim to assess the po-

tential strengths and limitations of LLMs in this domain. Criti-

cally, by altering the input prompt formats, we aim to evaluate

how effectively LLMs can extract and leverage the underlying

structural information from the dynamic mobility patterns to en-

hance their performance in subsequent tasks. Moreover, we delve
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into both the effectiveness and interoperability of LLMs’ predic-

tions. The source code of the model and the datasets used in this

study are available at https://github.com/onspatial/LLM-outlier-

detection, https://github.com/onspatial/geolife-outlier-dataset and

https://github.com/onspatial/pol-outlier-dataset, respectively.

The rest of the paper is organized as follows. Section 2.2 describes

the simulated and real-world datasets used in this study. Section 2

presents the methodology, including the input prompt formats and

the comparison methods. Section 3 details the experimental setup

and results. Finally, Section 4 concludes the paper.

2 Methodology
In this section we present the methodology used to evaluate the

performance of large language models (LLMs) in detecting anoma-

lous human mobility patterns. We first describe the datasets used

in this study, followed by the comparison methods and the input

prompt formats used to evaluate the LLMs.

2.1 Experimental Design and Implementation
Encoding Trajectories to Sequence. The original dataset comprises

check-in records, each represented as a row containing a times-

tamp, user ID, and location coordinates, along with the type of

location. For example, a typical row might appear as follows: lati-

tude 39.90523006334842, longitude 116.39160929411752, start time

2009-10-11,07:02:49, end time 2009-10-11,07:27:34, location type:

Pub, user ID: 46. We then transform this data for each user into a

structured format encoding the time, location type, and distance

from the previous check-in, e.g., "Sun 07:27, Pub, 2.1 km." This en-

coded data is subsequently utilized to generate the input prompts

for large language models (LLMs).

Input Prompt Formats. To systematically study the research ques-

tions above, we design two different dimensions to create input

prompts for the LLMs. Specifically, (1)With/Without Hint: Given
that an anomaly begins at a specific time point in the data, it is

crucial to evaluate the performance of the LLMs whether this in-

formation is provided or not. Notably, for all comparative methods,

this hint is used to divide the data into training and testing sets.;

(2) Separate vs Combine: It would also be interesting to assess

whether there is a significant difference in performance when pre-

senting all the trajectories in a single prompt versus in separate

prompts. This is because placing them all in one prompt might allow

the model to consider interactions between different trajectories.

On GitHub we present examples to illustrate the details of prompt.

Choices of LLMs. We opted to utilize OpenAI’s state-of-the-art

models, GPT-3.5 and GPT-4, via their API system, and Claude-2 by

Anthropic. Specifically, we use gpt-3.5-turbo-16k-0613 and gpt-4-

0613 for ‘Separate’ prompt, and Claude-2 for ‘Combine’ prompt due

to its capability to hold long input prompt up to 100K input context

window size.

Evaluation Metrics. We also compared the performance of LLMs

with two state-of-the-art LLMs, GPT-3.5 and GPT-4, and a state-

of-the-art LLM by Anthropic, Claude-2. We used the Top-10 Hits,
Top-25 Hits, AP score, and AUC score as evaluation metrics.

The detailed experimental settings are described in the following

subsections.

Outlier Type #Agents Source Period #Outliers

hunger 1000 POL 450+14 days 90

work 1000 POL 450+14 days 30

social 1000 POL 450+14 days 30

combined 3000 POL 450+14 days 150

imposter 69 GeoLife 4 years 20

Table 1: Specification of the datasets utilized in this paper.
2.2 Simulation and Dataset Generation
This subsection describes both the simulated using the Patterns-of-

Life Simulation [4, 6, 15, 16] and real-world dataset based on the

GeoLife dataset [38, 43]. Specifications of the datasets, including

details and key attributes, can be found in Table 1. The source

code of the simulation and data processing of the GeoLife dataset

is accessible through the GitHub repository: https://github.com/

onspatial/geolife-outlier-dataset. In addition, the dataset is available

for download at https://osf.io/rxnz7/.

2.2.1 Simulation of Patterns of Life . The patterns of life simulation

was designed to emulate human needs and behavior in an urban en-

vironment [45]. Within the simulated environment, virtual entities

referred to as agents perform actions that mirror human activities.

These include attending work, forming friendships, engaging in

social gatherings, and more. The agents’ existence is crafted to

resemble human life in a real-world environment (roads, buildings)

obtained fromOpenStreetMap [2]. Throughout their simulated lives,

agents navigate to diverse locations, including restaurants, work-

places, residential apartments, and recreational venues. A salient

feature of the simulation is the generation of comprehensive log

files. These logs contain extensive data regarding the agents, in-

cluding their location and current state information, thus allowing

for in-depth analysis and research.

In our study, we generated data by running simulations over

four distinct maps, namely Fairfax County, Virginia, USA (FVA); the

French Quarter of New Orleans, Louisiana, USA (NOLA); Atlanta,

Georgia, USA (ATL); and Beijing, China (BJNG). The simulations

were conducted over a period of 450 days to replicate normal life,

followed by an additional 14 days to incorporate abnormal behavior

into the regular patterns. We introduced three specific types of

abnormal behavior that define outliers trajectories:

• Hunger outlier: An agent under this category becomes hungry

more quickly. Such agents have to go to restaurants or their

homes much more often.

• Social outlier: This type of agent randomly selects recreational

sites to visit when needed, rather than being guided by their

attributes and social network.

• Work outlier: Agents in this category abstain from going to

work on workdays.

We further divided these abnormalities into three intensity levels:

red, orange, and yellow. Red outliers exhibit extremely abnormal

behavior, orange outliers act moderately abnormal, and yellow

outliers display abnormal behavior less frequently. For example,

a work outlier will decide not to go to work 100%, 50%, or 20% of

the time when classified as red, orange, or yellow, respectively. We

divide the simulation into 450 simulation of days of normal behavior,

followed by 14 days of a small number of agents exhibiting outlier

behavior. Details are in Table 1, with an extended dataset in [5].

2.2.2 Real World Dataset (GeoLife). The real-world dataset for

this study was created using the Microsoft Research Asia’s GPS

https://github.com/onspatial/LLM-outlier-detection
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Table 2: Outlier detection performance for all datasets. *We report Top-25 Hits instead of Top-100 for Geolife dataset due to
their size constraints on datasets. (-) denotes the absence of experiments due to the API cost issue.

Geolife Patterns-of-Life

Model Top-10 Hits Top-25 Hits
*

AP score AUC score Top-10 Hits Top-100 Hits AP score AUC score

OMPAD 1 4 0.1665 0.1697 0 0 0.0079 0.4512

MoNav-TT 0 7 0.2849 0.3989 0 0 0.0094 0.4798

TRAOD 4 7 0.1060 0.5498 0 1 0.0030 0.4390

DSVDD 7 15 0.6246 0.7714 1 2 0.0120 0.5398

DAE 5 12 0.4627 0.6234 0 1 0.0089 0.4649

GPT-3.5 5 8 0.4014 0.4979 0 6 0.0365 0.7572

GPT-3.5-with-hint 4 12 0.3741 0.5917 0 2 0.0176 0.6220

GPT-4 3 9 0.2732 0.4417 - - - -

GPT-4-with-hint 5 8 0.3181 0.4818 - - - -

Claude-2 4 13 0.4756 0.7474 - - - -

Claude-2-with-hint 7 16 0.6879 0.8875 - - - -

Trajectory dataset [43]. Since the original data did not conform to a

check-in format, we employed themethod outlined in [20] to extract

stay points, thereby transforming the data to fit the check-in pattern

used in life simulation studies. Next, we utilized OpenStreetMap

to categorize locations into four groups: apartments, workplaces,

pubs, and restaurants. Given that OpenStreetMap encompasses a

broad array of categories and types, we manually classified them

into these four distinct groups. Upon preprocessing the data, we

eliminated agents with fewer than 50 records, resulting in a final

count of 69 agents with a total of 14,080 training trajectories and

3,552 test trajectories. Within the context of the GeoLife dataset,

we introduced a specific outlier type called the “imposter outlier".

An agent acting as an imposter outlier by switching the trajectories

with another agent after a specific time point. The dataset was then

divided into two segments: 80% of the stay points for training and

introduced outliers into the remaining 20% for test.

3 Experimental Results
3.1 Experimental Settings
We conducted the experiments on two human mobility benchmark

datasets: GeoLife [43] and Patterns-of-Life [6, 15]. We compared

the performance of LLMs with several unsupervised trajectory out-

lier detection methods, including three non-deep learning methods

OMPAD [9], MoNav-TT [37] and TRAOD [18], and two state-of-

the-art deep learning methods DSVDD [28] and DAE [13, 44].

3.2 LLM Detection Results
Broadly, this paper focuses on studying the central question of

investigating the capabilities of LLMs on identifying anomalous

behaviors within human mobility patterns from three perspectives:

• Can LLMs effectively detect anomalous behaviors within
human mobility patterns without any indicative informa-
tion? It is intriguing to assess whether LLMs can attain substan-

tial predictive performance on anomaly detection tasks, even in

the absence of any clue about the anomalies, e.g. such as temporal

occurrence or the nature of the anomaly.

• Can providing indicative clues about the anomaly enhance
the detection efficacy of LLMs? Incorporating specific clues or
hints about potential anomalies might bolster the LLM’s ability

to identify irregularities more accurately. By offering contextual

information, it could guide the LLM to focus on certain aspects

of the data and make more informed predictions.

• Can LLMs provide reasonable explanation to their judge-
ments? Beyond mere classification, it is imperative to observe

whether LLMs can elucidate the fundamental reasoning behind

their determinations. Specifically, can these models articulate the

underlying rationale when predicting human mobility patterns

as anomalous or normal, thereby enhancing the transparency

and trustworthiness of their judgments?

• LLMs can effectively detect anomaly behaviors without
any indicative information.We observed that the LLM demon-

strates commendable detection results on both datasets. For the

Geolife dataset, Claude-2 surpasses all non-deep learning meth-

ods, achieving performance on parwith the deep learningmethod.

Both GPT-3.5 and GPT-4 also produce results that are comparable

to those of other methods. This might suggest that presenting

all mobility trajectories in a single prompt may lead to better

performance than using separate prompts. As for the PoL dataset,

the GPT-3.5 model significantly outperforms all the methods it

was compared against.

• Providing additional indicative information can further
enhance the detection efficacy of LLMs.We observed that by

incorporating a ‘hint’ into the LLMs, detection performance con-

sistently improved across all models when tested on the Geolife

dataset. Notably, Claude-2-with-hint demonstrated a significantly

superior detection rate, surpassing all other comparison methods.

On the other hand, there was a slight dip in performance on

the PoL dataset when adding the hint. This could arguably be

attributed to the LLM’s ability to manage longer input temporal

trajectories, as evidenced by the average length of trajectories

being 52.2 for Geolife and 182.0 for PoL.

• LLMs is capable to provide reasonable explanation to their
judgements. Examples of generated explanations alongside pre-

dictions can be found on GitHub for the Geolife dataset. Notably,

we observed that the LLMs are capable of providing cogent ex-

planations for their prediction results. Such clarity is pivotal for

ensuring transparency in anomaly detection methods.

4 Conclusion
In this work, we conduct empirical studies to provide insights on

the strengths and limitations of large language models (LLMs) for
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detecting anomalous behaviors from mobility data, by comparing

LLMs to specialized anomaly detection methods. Our key find-

ings show that LLMs can achieve promising anomaly detection

performance even without any specific cues about potential anom-

alies. Furthermore, providing contextual information about possible

irregularities can enhance the prediction accuracy of LLMs. In addi-

tion, LLMs can provide explanations for their anomaly judgments,

thereby improving model transparency. Our results suggest that

LLMs can be a valuable tool for detecting anomalies in human mo-

bility data, offering a new perspective on the application of LLMs

in the field of anomaly detection.

For future work, we plan to study the effectiveness of open source

LLMs such as Llama-2 models to improve model transparency. We

also aim to address the issue that LLMs have difficulty processing

long mobility trajectories due to the limited context window size.

Moreover, we intend to evaluate our approach on additional mobil-

ity datasets. This work represents an initial exploration of applying

LLMs for the important and promising task of mobility anomaly

detection. We hope it will inspire more research in this direction.
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