
ReeFRAME: Reeb Graph based Trajectory Analysis Framework to
Capture Top-Down and Bottom-Up Patterns of Life

Chandrakanth Gudavalli
∗

ECE Department

University of California

Santa Barbara, USA

chandrakanth@ucsb.edu

Bowen Zhang
∗

ECE Department

University of California

Santa Barbara, USA

bowen68@ucsb.edu

Connor Levenson

ECE Department

University of California

Santa Barbara, USA

clevenson@ucsb.edu

Kin Gwn Lore

RTX Technology Research Center

Connecticut, USA

kin.lore@rtx.com

B. S. Manjunath

ECE Department

University of California

Santa Barbara, USA

manj@ucsb.edu

Abstract
In this paper, we present ReeFRAME, a scalable Reeb graph-based

framework designed to analyze vast volumes of GPS-enabled hu-

man trajectory data generated at 1Hz frequency. ReeFRAMEmodels

Patterns-of-life (PoL) at both the population and individual levels,

utilizing Multi-Agent Reeb Graphs (MARGs) for population-level

patterns and Temporal Reeb Graphs (TERGs) for individual trajec-

tories. The framework’s linear algorithmic complexity relative to

the number of time points ensures scalability for anomaly detec-

tion. We validate ReeFRAME on six large-scale anomaly detection

datasets, simulating real-time patterns with up to 500,000 agents

over two months.

CCS Concepts
• Computing methodologies→Modeling methodologies.

Keywords
Reeb Graphs, Trajectory Analysis, Anomaly Detection

ACM Reference Format:
Chandrakanth Gudavalli, Bowen Zhang, Connor Levenson, Kin Gwn Lore,

and B. S. Manjunath. 2024. ReeFRAME: Reeb Graph based Trajectory Anal-

ysis Framework to Capture Top-Down and Bottom-Up Patterns of Life.

In 1st ACM SIGSPATIAL International Workshop on Geospatial Anomaly
Detection (GeoAnomalies’24), October 29, 2024, Atlanta, GA, USA. ACM
GeoAnomalies’24 Workshop, Atlanta, GA, USA, 9 pages. https://doi.org/10.

1145/3681765.3698452

1 Introduction
Trajectories encapsulate the dynamic nature of movement across

various domains, ranging from individual human activities to ve-

hicular traffic and migratory patterns of animals. As such, they are

∗
Equal Contributors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1144-2/24/10

https://doi.org/10.1145/3681765.3698452

Appear Events

Disappear Events

Connect Events

Disconnect Events

arising

splitting

ending

merging

Figure 1: Set of seven one-day trajectories of an agent,
contributing to appear/disappear/connect/disconnect events.
Events will be later used to construct Reeb graph for the
agent.

ubiquitous and integral to understanding complex systems in urban

planning, ecology, and social sciences. However, modeling these

trajectories to extract meaningful patterns and detect anomalies is

a significant challenge that requires sophisticated analytical tools

and methods. This challenge is compounded by the magnitude

and complexity of trajectory data, which often involves irregular

sampling rates, noise, and multidimensional attributes [7].

The analysis of trajectories involves identifying key events, such

as points where trajectories converge (connect events) or diverge

(disconnect events), as shown in Figure 1. These events are crucial

to understanding group behavior, traffic flow interruptions, and

other critical dynamics within the studied systems. The ability to

detect and analyze these events can provide insights into routine

and anomalous behaviors, aiding in everything from traffic man-

agement to predictive policing [16]. However, traditional methods

of trajectory analysis often struggle with the volume and complex-

ity of data, failing to efficiently process and interpret large-scale

datasets.

Reeb graphs offer a robust solution to these challenges. Orig-

inating from topology, Reeb graphs abstract the continuity and

connectivity of data, making them particularly suited for analyzing

complex trajectory data [11]. By focusing on the essential struc-

ture of data and filtering out noise and irrelevant details, Reeb

graphs simplify the representation of trajectories, capturing critical

transitions and changes in the connectivity patterns.

https://doi.org/10.1145/3681765.3698452
https://doi.org/10.1145/3681765.3698452
https://doi.org/10.1145/3681765.3698452


GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA Gudavalli et al.

Human trajectories are shaped by a combination of top-down

and bottom-up societal patterns. Top-down patterns arise from exter-

nal structures imposed by institutions or societal norms, such as city

infrastructure, traffic regulations, or work schedules, which guide

and constrain movement at the population level. These patterns

manifest in organized, predictable behaviors like daily commutes

or visits to public spaces constrained by operating hours. In con-

trast, bottom-up patterns emerge from individual-level decisions

driven by personal needs and spontaneous choices. These behav-

iors are more dynamic and less predictable, shaped by factors like

individual preferences, spontaneous travel, or personal routines.

Our framework, ReeFRAME, captures both types of patterns by

leveraging Multi-Agent Reeb Graphs (MARGs) to model top-down

population-level structures and Temporal Reeb Graphs (TERGs) to
analyze bottom-up, agent-specific behaviors. By combining these

approaches, ReeFRAME provides a comprehensive tool for detect-

ing anomalies in human trajectories, identifying deviations from

both societal norms and individual consistency.

Traditional Reeb graphs, typically applied in two-dimensional

spaces, are useful for understanding the spatial continuity and con-

nectivity of individual trajectories. However, they have limitations:

they do not encode temporal information, are not well-suited for

trajectories with loops, and have a high computational complexity

of 𝑂 (𝑛2). To address these issues, time-based Reeb graphs [14] ex-

tend the analysis to include temporal dimensions by constructing

Reeb events at different timestamps, with a computational com-

plexity of 𝑂 (𝑛). This approach allows for the examination of how

trajectories evolve over time and supports the incorporation of

multiple features at each node of the Reeb graph. When dealing

with complex systems involving multiple agents, such as urban

traffic, Multi-Agent Reeb Graphs (MARG) offer a scalable and inter-

pretable framework that captures population-level patterns while

preserving the ability to analyze individual trajectories. By inte-

grating these various forms of Reeb graphs, our approach provides

a comprehensive toolset for analyzing trajectories at both micro

and macro levels.

Main Contributions:

• We propose a generalizable framework that leverages Reeb

graphs to model both top-down and bottom-up patterns of

normalcy in trajectory data.

• We introduce Multi-Agent Reeb Graphs (MARG), a scalable

methodology designed to represent population-level patterns

within an interpretable Reeb graph structure.

• We outline techniques to enhance the descriptiveness of

agent-level Temporal Reeb Graphs (TERG), enabling them

to capture bottom-up patterns of normalcy.

• We validate our approach using a large-scale, simulated GPS

trajectory dataset involving up to 500,000 agents in a single

city over a two-month period, demonstrating its effectiveness

in capturing and analyzing complex patterns at scale.

2 Related Work
The analysis and modeling of human mobility patterns have gar-

nered considerable interest due to the widespread adoption of GPS-

enabled devices. Recent advances in location-based services have

accelerated consumer incorporation of smart devices (e.g., smart-

phones and wearables) into activities and routines in daily lives. As

GPS positional data provides the foundation to reveal various behav-

ioral patterns present in a person, it has been frequently adopted to

model the movements of a suspect in relation to normal population

behavior. Traditional approaches often rely on geometric features

and statistical techniques to model trajectory data. Studies such as

those by [16] and [15] have utilized statistical methods to extract

patterns like mean velocity and periodic behaviors from trajectory

datasets. However, these methods struggle with the complexity and

dynamic nature of high-dimensional mobility data, as they cannot

adequately capture the intricate spatial relationships and temporal

regularities inherent in human movements.

Advancements in machine learning, particularly deep learning,

have introduced more sophisticated models for trajectory analy-

sis. For instance, neural networks like LSTMs and attention-based

models have been explored for next-location prediction and anom-

aly detection in movement patterns, providing enhanced accuracy

but at the cost of interpretability [5, 13]. Despite their efficacy,

the black-box nature of these models limits their practical applica-

tion, especially in scenarios requiring transparent decision-making

processes. Additionally, anomaly detection often involves heavily

skewed data distributions, where normal behavior constitutes the

majority of the data and anomalies are rare events (0.1% anomaly

to normal ratio in our datasets). This imbalance poses significant

challenges for model training and evaluation. The small anomaly

sample size makes it difficult for a model to learn a generalized rep-

resentation of what constitutes an anomaly. This diversity among

anomalies can lead to a situation where the model fails to detect

novel or previously unseen anomalies [6].

Graph-based methods have emerged as powerful tools for rep-

resenting complex spatial interactions and temporal transitions,

as illustrated by [3, 8]. These methods encapsulate relationships

among trajectories in a more intuitive and interpretable manner,

allowing for the exploration of both micro and macro mobility

behaviors.

However, scaling these methods to handle large volumes of high-

dimensional data efficiently presents significant challenges. Deep

learning models require substantial computational resources and

are prone to overfitting and lengthy training times due to their com-

plex, multi-layered architectures [12]. Similarly, graph-based meth-

ods struggle with managing large graphs, dynamically updating

them, and optimizing graph partitioning to balance computational

loads effectively [4]. Addressing these scalability issues involves

strategies such as model simplification, use of distributed and paral-

lel computing, and incremental learning to update models without

full retraining. Additionally, approximation algorithms can reduce

computational demands, while leveraging AWS [1] cloud parallel

computing and specialized hardware like CPUs or GPUs can signif-

icantly enhance processing efficiency and scalability. Combining

these approaches enables scaling of these technologies to meet

the demands of large-scale applications, maintaining performance

without sacrificing speed or accuracy.

This paper explores the use of Reeb graphs for analyzingmobility

patterns. Reeb graphs have been employed to model and analyze the

structure of white matter pathways in the brain, offering insights

into neural connectivity and brain architecture [9, 10]. Similarly,



ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA

in computational geometry, Reeb graphs facilitate the analysis of

shape and form, providing tools for shape segmentation and recog-

nition, which are essential in fields such as computer-aided design

and manufacturing.

ReeSPOT [14] builds upon this foundation by employing Reeb

graphs, which abstract and simplify trajectory data into a topo-

logical structure that captures significant spatial and temporal de-

viations. This approach not only enhances the interpretability of

the data but also scales efficiently with the volume of data points,

addressing a critical gap in traditional and machine learning-based

methods. By clustering common behavior patterns using Reeb

graphs, ReeSPOT extends the capabilities of graph-based analy-

sis to effectively model and identify deviations from normalcy in

human trajectories, setting a new direction for research in the do-

main of agent behavioral analysis and anomaly detection. However,

ReeSPOT [14] is not designed to capture population level patterns,

which can be very useful to model human mobility signatures.

To tackle the challenges of scalability while effectively capturing

both agent-specific and population-level patterns, we introduce

ReeFRAME. This framework addresses the shortcomings of existing

methods, providing a more powerful approach for modeling and

analyzing human mobility patterns at both micro and macro levels.

3 Methodology
In this section, we provide detailed descriptions of the algorithms

executed by each module within our framework. A visual represen-

tation of the architectural overview of ReeFRAME is provided in Fig-

ure 2. Section 3.1 and 3.2 detail the algorithms used for agent-level

modeling, while Section 3.3 addresses the algorithms employed for

population-level modeling. The methods for integrating agent-level

and population-level models are discussed in Section 3.4.

3.1 Temporal Reeb Graph Construction (TERG)
A Reeb graph is a mathematical structure used to analyze the topol-

ogy of a manifold. It was first introduced as a means to study the

evolution of level sets of a real-valued function defined on a mani-

fold [11]. The nodes of a Reeb graph represent critical points where

the topology of the level sets changes, such as merges, splits, or

holes. The edges of the graph connect these nodes, indicating con-

tinuous changes between critical points. Reeb graph on the spatial

data was first used in [2] to represent the merging and splitting

structures.

The concept of Reeb graphs applied to trajectory data is signifi-

cant in modeling the patterns of daily human activities by capturing

and analyzing the regular, predictable patterns of movement that

characterize daily human behavior, thus, enabling the potential to

detect deviated anomalous trajectories from these patterns. The dis-

cussed work ReeSPOT [14] leverages the structure of Reeb graphs

to interpret and analyze simulated human movements via GPS tra-

jectories. GPS trajectories are defined as sequences of time-stamped

GPS coordinates representing individual movements:

𝑇 = {𝑡0 : 𝑝0, 𝑡1 : 𝑝1, . . . , 𝑡𝑚 : 𝑝𝑚}

where 𝑡𝑖 is a timestamp and 𝑝𝑖 = (𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑔𝑖 ) denotes the geograph-
ical position at time 𝑡𝑖 .

The formulation of Temporal Reeb Graph (TERG), 𝑅(𝑉 , 𝐸), in-
volves mapping trajectories to a topological space where nodes 𝑉

represent significant events or critical points, and edges 𝐸 denote

the continuity of movement between these nodes.

The constructions of Reeb graphs are described in Algorithm

1 and 2 in the ReeSPOT paper [14]. Reeb graphs are constructed

by first finding connect and disconnect events based on a distance

threshold 𝜖 . The Euclidean distance, d, between 2 GPS points is as

follows:

𝑑 (𝑝𝑖 , 𝑝 𝑗 ) =
√︃
(𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡 𝑗 )2 + (𝑙𝑜𝑛𝑔𝑖 − 𝑙𝑜𝑛𝑔 𝑗 )2 .

For example, appear and disappear events represent the start and

ending of trajectories. At a timestamp 𝑘 , given two subtrajectories

of an agent 𝑇 and 𝑇 ′, if 𝑑 (𝑇 [𝑘],𝑇 ′ [𝑘]) < 𝜖 , it is a connect event,

and if 𝑑 (𝑇 [𝑘],𝑇 ′ [𝑘]) ≥ 𝜖 , we mark it as a disconnect event. One

can use haversine distance instead of euclidean distance, depending

upon the vastness of area of interest (AoI). A Reeb graph is then

constructed using the detected events by three steps:

• Event computationThe first step involves computing events

including appear, disappear, connect, and disconnect, where

the algorithm determines potential events at each time point

in the trajectories 𝑇 and 𝑇 ′. This computation takes 𝑂 (𝑚)
time, where𝑚 represents the number of timestamp points

in the trajectories.

• Dynamic Graph Construction The next step is to con-

struct the dynamic graph 𝐺 using the computed events. The

dynamic graph is updated at each timestamp 𝐺𝑘 , where

𝑘 ∈ {1, 2, . . . , 𝐾}. Nodes in 𝐺𝑘 represent daily trajectories,

and edges represent 𝜖-connectivity between them, reflecting

the proximity of trajectories at each time point.

• Bundle Partition The connected components of 𝐺𝑘 are

grouped into bundles, denoted as𝐵𝑖 . This grouping is achieved

using graph traversal techniques to identify components that

exhibit direct connectivity. The same bundle appearing at

different continuous timestamps indicates that the trajecto-

ries remain unchanged, while unique bundles signify where

events or changes are occurring.

• Reeb Graph Construction Finally, the Reeb graph assem-

bly constructs the final Reeb graph 𝑅(𝑉 , 𝐸) from the iden-

tified bundles. Each node in 𝑅(𝑉 , 𝐸) represents a unique

bundle 𝐵𝑖 , and the edges between the nodes represent the

transitions between these bundles. The assembly process

highlights the primary pathways and transitions in the data,

simplifying the complex trajectory data into a topologically

meaningful and manageable structure.

3.2 Making Temporal Reebs Describable
Now that we have a scalable way to capture an agent’s trajectory

into a Reeb graph, we can create a clear summary of their move-

ments. This summary helps us identify key moments when the

agent’s daily sub-trajectories connect, cluster, or disconnect from

each other. By focusing on these important events, we filter out

most of the redundant information in the trajectory. To perform

further analysis on these Reeb graphs, it’s important to describe

the nodes and edges effectively.

For trajectory analysis, we compute the following feature types:



GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA Gudavalli et al.

Reeb Graph 
Generation
Reeb Graph 
Generation
Reeb Graph 
Generation
Reeb Graph 
Generation

Agent-level 
Processing

Population-
level 

Processing

Fusion 
Module

Trajectory 
Data

Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes

Feature 
Extraction from 

Reeb Nodes

Detections

FAS-Temporal

FAS-Agents

Analytics

Trajectory
Modeling Inference

Trajectory Data

Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes
Temporal Reeb 

Graph Generation

Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes
Feature Extraction 
from Reeb Nodes

Generation of 
TERG Node 
Descriptors

Multi Agent Reeb 
Graph Generation

Feature 
Ensembler Detections

Point Level

Agent Level

Population Level Modelling

Agent Level Modelling

Figure 2: Architectural overview of the proposed anomaly detection framework, ReeFRAME. The pipeline splits into two key
modeling processes: Agent Level Modeling, where Temporal Reeb Graphs (TERGs) are generated for individual agents, and
Population Level Modeling, where a Multi-Agent Reeb Graph (MARG) is constructed to model broader population patterns.
The TERG and MARG features are combined in the Feature Ensembler, which integrates and analyzes the data to produce
Detections, identifying agents that deviate from normal behavior.

(1) Location-based Features: These include the agent’s lati-
tude and longitude, along with the timestamp at each GPS

coordinate.

(2) Kinematic Features: These features include the agent’s ve-
locity at a given node, the estimated mode of transportation,

travel direction, the average stop duration at each location

and radius of gyration (which is the diameter of both training

and testing Reeb graphs). Here we define diameter as the

maximum of haversine distances between all pair of nodes

in the reeb graph.

(3) Semantic Features: These describe Points of Interest (POIs)
around a Reeb node, such as home, work, or other significant

locations.

Each node within the agent-level Reeb graph is described using

these features. This enabled us to train various machine learning

models that can operate on TERGs.

3.3 Multi-Agent Reeb Graphs (MARGs)
While Temporal ReebGraphs (TERGs) effectively capture individual-

specific patterns, they do not account for population-level patterns,

which are essential for modeling broader patterns of normalcy in a

society. To address this, we propose the use of Multi-Agent Reeb

Graphs (MARGs), which model the trajectories of an entire pop-

ulation within a single Reeb graph. The core idea is to construct

MARGs using training trajectories and then compare the TERG

generated for each agent’s test trajectory against the pre-computed

MARG.

However, the computation of MARGs can be time-consuming

if we treat all agents as a list of sub-trajectories and compute a

temporal Reeb graph for the entire corpus. Given a population of

𝑁 agents, each with 𝑘 sub-trajectories, the time complexity for

computing MARGs is 𝑂 (𝐿 · 𝑁 · log(𝑁 )), where 𝐿 represents the

length of each sub-trajectory.

To mitigate this potential increase in computation time, we com-

pute MARGs incrementally, as illustrated in Figure 3. For example,

if a Reeb graph has been computed for one agent over a 30-day

period, we can use the Incremental Reeb Graph (IRG) construction

methodology, as outlined in Algorithm 1, to add a new one-day tra-

jectory to the existing Reeb graph. We have extended this concept

from a single agent to a population of agents to compute MARGs

incrementally. Initially, we compute the temporal Reeb graph for

𝑀 agents. In our experiments, we set𝑀 = 1000, which allows us to

compute the initial Reeb graph. Using this as a starting point, we

then incrementally add the rest of the population’s sub-trajectories

to the initial Reeb graph. The time complexity for adding a sub-

trajectory to a Reeb graph is linear with respect to the length of the

sub-trajectory (𝐿) and the number of agents (𝑁 ) in the Reeb graph,

𝑂 (𝐿 · 𝑁 ).
Although we developed MARGs using the Incremental Reeb

Graph (IRG) approach, IRGs can also be a valuable tool for updating

an existing Reeb graph. For instance, if a Reeb graph has been

constructed for an agent using 30 one-day sub-trajectories, the

incremental Reeb approach described in this section can update

the agent’s existing Reeb graph. Similarly, if a Reeb graph has

been computed for 1000 agents, another agent can be added to the

existing Reeb graph using the IRG algorithm. This approach avoids

the need to recompute the Reeb graph for the entire population

when adding just one more agent. This paper presents a proof-of-

concept approach for developing IRGs, but more extensive large-

scale experiments are needed to apply this idea to trajectories at

scale in various contexts.



ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA

Figure 3: Demonstration of Incremental Reeb graph Construction using a toy example. (a) Sample set of three sub-trajectories;
(b) Reeb graph constructed from the sub-trajectories; (c) A new sub-trajectory that will be introduced into the Reeb graph;
(d) Updated Reeb graph accommodating the new sub-trajectory.

Algorithm 1 Incremental Reeb Graph Generation

1: Input: Existing Reeb graph 𝐺 , Sub-Trajectory 𝑇 , Threshold 𝜖
2: Output: Updated Reeb graph 𝐺 ′

3:

4: procedure UpdateReeb(𝐺,𝑇 , 𝜖)
5: Initialize 𝐺 ′ ← 𝐺

6: Initialize Event List 𝐸 ← []
7: Initialize 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ← false
8: for each point 𝑝𝑖 at time 𝑡𝑖 in 𝑇 do
9: for each edge 𝑒 in 𝐺 ′ do
10: Compute the closest point 𝑝𝑒 on edge 𝑒 at time 𝑡𝑖
11: Calculate distance 𝑑 between 𝑝𝑖 and 𝑝𝑒
12: if 𝑑 < 𝜖 and 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 = false then
13: Add a connect event to 𝐸

14: Set 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ← true
15: else if 𝑑 ≥ 𝜖 and 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 = true then
16: Add a disconnect event to 𝐸

17: Set 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ← false
18: end if
19: end for
20: end for
21: for each event 𝑒 in 𝐸 do
22: Update 𝐺 ′ based on the event 𝑒

23: end for
24: return 𝐺 ′

25: end procedure

3.4 Fusing TERGs with MARGs
To effectively analyze the trajectories, we construct Temporal Reeb

Graphs (TERG) for agent level andMulti Agent ReebGraphs (MARG)

for population level analysis. Let 𝑅𝑖 = (𝑉𝑖 , 𝐸𝑖 ) represent the TERG
for the 𝑖-th agent’s training data, where nodes𝑉𝑖 capture significant

events or changes in the agent’s trajectory, and edges 𝐸𝑖 represent

continuous movement between these events. Similarly, the MARG

𝑅𝐺 = (𝑉𝐺 , 𝐸𝐺 ) is constructed by aggregating the trajectories of all

agents (as described in Section 3.3), with nodes 𝑉𝐺 representing

events common across multiple agents, and edges 𝐸𝐺 denoting the

flow of movement at the population level.

3.4.1 Test Trajectory Analysis. When a new test trajectory 𝑇𝑡𝑒𝑠𝑡 is

introduced, a corresponding test Reeb graph 𝑅𝑡𝑒𝑠𝑡 = (𝑉𝑡𝑒𝑠𝑡 , 𝐸𝑡𝑒𝑠𝑡 )
is generated using the same methodology as for the agent-level

Reeb graphs. This graph captures the key events and transitions

within the test trajectory.

Each node 𝑣𝑡𝑒𝑠𝑡 ∈ 𝑉𝑡𝑒𝑠𝑡 in the test Reeb graph is compared sepa-

rately with the agent-level Reeb graph 𝑅𝑖 and the global-level Reeb

graph 𝑅𝐺 , where 𝑖 is the same agent as the test Reeb graph. A simi-

larity score 𝑆𝑖 (𝑣𝑡𝑒𝑠𝑡 ) is computed for the agent-level comparison

by evaluating the proximity and structural similarity between 𝑣𝑡𝑒𝑠𝑡
and the closest node in 𝑅𝑖 . Similarly, for the global-level compar-

ison, a score 𝑆𝐺 (𝑣𝑡𝑒𝑠𝑡 ) is calculated by comparing 𝑣𝑡𝑒𝑠𝑡 with the

closest node in 𝑅𝐺 .

3.4.2 Combining Scores. After obtaining the scores 𝑆𝑖 (𝑣𝑡𝑒𝑠𝑡 ) and
𝑆𝐺 (𝑣𝑡𝑒𝑠𝑡 ) for each node 𝑣𝑡𝑒𝑠𝑡 in the test Reeb graph, these scores

are combined to produce a final score 𝑆 (𝑣𝑡𝑒𝑠𝑡 ). The final score can
be computed as a weighted sum of the individual scores:

𝑆 (𝑣𝑡𝑒𝑠𝑡 ) = 𝛼 · 𝑆𝑖 (𝑣𝑡𝑒𝑠𝑡 ) + 𝛽 · 𝑆𝐺 (𝑣𝑡𝑒𝑠𝑡 )

where 𝛼 and 𝛽 are weights that determine the relative importance of

the agent-level and population-level comparisons for different sce-

narios. This combined score 𝑆 (𝑣𝑡𝑒𝑠𝑡 ) reflects both the individual and
population-level consistency of the test trajectory, enabling robust

anomaly detection. The selection of 𝛼 and 𝛽 is dataset specific, with

their values determined empirically based on the characteristics of

the datasets, as detailed in Section 4.2.



GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA Gudavalli et al.

D-1.1 D-1.2 D-1.3 D-1.4 D-2.1 D-2.2
Total number of agents 200,000 200,000 200,000 200,000 500,000 500,000

Total number of points 1.03

Trillion

1.03

Trillion

1.03

Trillion

1.03

Trillion

864

Billion

864

Billion

Sampling Frequency 1 Hz 1 Hz 1 Hz 1 Hz 0.33 Hz 0.33 Hz

Number of
Anomaly Generation Teams 9 9 9 9 4 4

Number of Anomalous agents
per Anomaly Generation Team 30 30 30 30 100 100

Number of
anomalous agents

∼270
(30x9)

∼270
(30x9)

∼270
(30x9)

∼270
(30x9)

∼400
(100x4)

∼400
(100x4)

Total number of
anomalous points 1.01M 0.95M 0.8M 0.98M 1.88M 1.93M

Number of agents
in each Weak Label Group 300 300 300 300 800 800

Duration of Train Trajectories 1 month

(31 days)

1 month

(28 days)

1 month

(28 days)

1 month

(28 days)

1 month

(31 days)

1 month

(28 days)

Duration of Test Trajectories 1 month

(31 days)

1 month

(28 days)

1 month

(28 days)

1 month

(28 days)

1 month

(31 days)

1 month

(28 days)

Modes of
Transportation Car Car Car Car

Car/Bike/

Walk

Car/Bike/

Walk

Size of Area of Interest 237

sq km

15540

sq km

1126

sq km

19662

sq km

281.6

sq km

281.6

sq km

Table 1: Detailed description of the datasets that are used to test ReeFRAME for anomaly detection.

4 Experiments
We applied our pipeline, ReeFRAME, to perform anomaly detection

on four datasets of simulated human trajectories. In this section, we

demonstrate the effectiveness of ReeFRAME in identifying anoma-

lous agents at scale. Section 4.1 details the datasets used for the

anomaly detection tasks. In Section 4.2, we present both the quan-

titative and qualitative results across all four datasets, following a

discussion on the feature engineering applied to the Reeb graphs.

Finally, Section 4.3 outlines the strategies employed to scale the

anomaly detection inference and to prepare ReeFRAME as a cloud-

ready framework.

4.1 Datasets
In this paper, we present the results of our anomaly detection

method applied to four datasets containing trajectories of vari-

ous individuals, referred to as agents. We also describe how we

simulated both normal and anomalous agent behaviors, along with

the assumptions made during dataset generation. In Section 4.2, we

share the quantitative and qualitative performance of ReeFRAME

on these datasets.

Each of the four datasets was specifically created to test anomaly

detection. As shown in Table 1, the datasets simulate two consec-

utive months of activity in a hypothetical city. The first month is

used as a training period, where all agents are assumed to behave

normally, providing a baseline for what typical behavior looks like.

During the second month, a small percentage of agents (< 0.01% of

the population) engage in unusual activities for varying periods.

The normal trajectories for both the training and testing phases

were generated by one team, while a separate set of teams were

tasked with creating the anomalous trajectories.

The datasets were generated with sets of simulation parameters

called ’trials’ - each with different duration, sampling rate, modes

of transportation, and areas of interest, with increasing complexity.

Trials were carried out by multiple teams with their own technical

approach to generate anomalies (to remain undetected by other

teams) and to detect anomalies (generated by other teams). To gen-

erate these anomalies, the teams were provided with the full set

of training data along with specific instructions, such as directing

certain agents to deviate from their usual paths to enter and exit des-

ignated areas within specific time frames. Each team was assigned

a different set of agents to alter. All agents generated in this manner

were labeled as anomalous. The teams worked independently to

ensure that the normal and anomalous data remained unbiased.

Typically, an anomalous agent would be instructed to travel

to a designated 50m x 50m geographical area (or a set of such

areas), stay there for a set period, and then return to their original

path. ReeFRAME’s task was to detect these deviations from normal

behavior and flag the corresponding agents as anomalous. Our team

contributed by generating some of the anomalous agents in each

dataset, following the anomaly generation instructions provided to

our team, similar to the way they were provided to other teams.

To better mimic real-world scenarios, the datasets also include

Weakly Labeled Groups (WLGs). These labels help narrow the

search for anomalies by indicating groups of agents that might be

involved in unusual activities. In this proof-of-concept experiment,

each WLG included a group of agents, with a small subset of agents

actually engaging in anomalous activities. ReeFRAME used these



ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA

Comparison of PR Curves Comparison of metrics based on precision, recall, and F1 score

Figure 4: Anomaly Detection Performance of ReeFRAME.

WLGs, along with the anomalous agent trajectories simulated by

our team, to extract features and accurately detect the agents that

were anomalous.

4.2 Feature Extraction, Hyperparameter Tuning,
and Results

Given the nature of Reeb graphs, they are implicitly well-suited for

modeling trajectories. However, it is essential to perform thorough

feature engineering to accurately describe the nodes and edges

of these Reeb graphs, enabling efficient comparison between the

training and testing Reeb graphs. While we do not have Reeb graph

construction parameters like 𝜏 and 𝜖 learnable with respect to

a loss function, we can assign meaningful features to the Reeb

graph nodes. These features can then be used to train downstream

models to detect deviations from patterns of normalcy. Since Reeb

graphs capture significant events within a trajectory, effectively

describing the nodes in a Reeb graph can encapsulate the essence of

an agent’s movements. As detailed in Section 3.2, trajectory data can

be characterized using three types of features: 1) Location-Based;

2) Kinematics-Based; 3) Semantics-Based.

For the four datasets we worked with, the optimal set of features

for each Reeb graph node included:

(1) Maximum stop duration of the agent at a given Reeb node

(2) Maximum velocity of the agent at the Reeb node

Best
F1 Score

Precision
at Best F1

Recall
at Best F1

AUC-PR
Score

D-1.1 0.657 0.762 0.577 0.287

D-1.2 0.321 0.886 0.196 0.057

D-1.3 0.803 0.753 0.859 0.733

D-1.4 0.523 0.86 0.376 0.462

D-2.1 0.936 0.992 0.886 0.910

D-2.2 0.842 0.953 0.755 0.644

Table 2: Quantitative Results showing the anomaly detection
performance of ReeFRAME.

(3) Distance from each test Reeb node to the nearest train Reeb

node

(4) Modes of transportation used by the agent at a given node

We also explored the use of semantic features, such as the list

of Points of Interest (POIs) around a given latitude-longitude to

describe the nature of the location. Our goal was to identify a feature

descriptor that could effectively flag one agent (or as few agents as

possible) per Weakly Labeled Group (WLG), to the greatest extent

possible. Ultimately, the feature set listed above proved to be the

most effective.

Since it is common for a population to exhibit both bottom-

up and top-down patterns of normalcy, we captured bottom-up

patterns by comparing training and testing Reeb graphs on an

agent-by-agent basis. For top-down patterns, we utilized the incre-

mental Reeb graphs discussed in Section 3.2. We constructed a large

Multi-Agent Reeb Graph (MARG) for the entire training population

and compared each test trajectory against this MARG. In this ex-

periment, each MARG node was described using GPS coordinates,

maximum velocity, and maximum stop duration. Test Reeb nodes

that deviated significantly from MARG nodes in terms of stop du-

ration and GPS information were flagged as anomalies. We arrived

at these feature vectors through automated hit-and-trial experi-

ments on various weighted feature vector combinations, aiming to

maximize the area under the Precision-Recall Curve (AUC-PR) for

the generated anomalies while minimizing the number of agents

flagged per WLG. Quantitative results on D-1.* and D-2.* datasets

are presented in Table 2. Figure 4 shows the Precision Recall curves

along with bar charts of other anomaly detection metrics. We also

report the run time taken by both D-1.* and D-2.* datasets in Sec-

tion 4.3, highlighting scalability of ReeFRAME.

This feature engineering methodology can become computation-

ally expensive as the population size and metadata increase. We are

currently working on developing a trainable framework to address

this challenge (further details in Section 5).

4.3 Scalable Inference on Cloud
The feature engineering and hyperparameter tuning for ReeFRAME

were conducted using an on-premise CPU cluster equipped with



GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA Gudavalli et al.

• S3_inter/concurrent_write_parquet/inter
mediate_zipped/

80 ZIP Files

• S3_input/train_agent
• S3_input/test_agent
• S3_input/weak_label_information

• S3_intermediate/intermediate_agent_level_scores/
• S3_intermediate/intermediate_point_level_scores/
• S3_intermediate/intermediate_data_for MARG_generation/

S3
Train and test 
Trajectories as 

Spark Delta Tables

S3

Output Triplets

Analytics Algorithm

S3

Anomaly Prediction 
Results

Decision Maker / 
Fusion Module

Agent-1:Agent-6250

Agent-493751:Agent-500000

1 KPO for PySpark, m5.8xlarge

1

3

JSONs with Weak Label Groups (WLG)

Analytics Algorithm
Analytics Algorithm

TERG Generation

Analytics Algorithm
Analytics Algorithm

Analytics Algorithm
MARG Generation

File1:6250

File493751:500000 S3

2

Input bucket
Intermediate bucket
Output bucket

S3 Bucket Legends:

80 Parallel KPOs
m5.2xlarge

Maximum of 
500K*3 =1.5M 
Files

80 Parallel KPOs
m5.2xlarge

Figure 5: AWS Architecture Diagram, demonstrating the cloud readiness of ReeFRAME and the strategies that we used to run
the pipeline on cloud.

732 CPU cores and 1.25TB of RAM. However, the current inference

pipeline has been optimized for cloud deployment and is packaged

as an Airflow Directed Acyclic Graph (DAG). This DAG efficiently

utilizes CPU nodes on an AWS EC2 cluster, balancing cost and

performance. Figure 5 provides an overview of the AWS architecture

used to process the datasets described in Section 4.1. For the largest

dataset, consisting of 500,000 agents, the DAG completed processing

in under 12 hours.

In this section, we provide a detailed description of the compute

and storage clusters employed to execute ReeFRAME in a cost-

effective and time-efficient manner on AWS.While there are various

ways to leverage cloud infrastructure, we describe the pipeline that

we developed to process the large scale datasets that we developed

in this paper. The train and test trajectories for each agent were

provided as Delta tables partitioned by agent ID, accommodating up

to 500,000 agents. Given the substantial size of the input and output

data, Delta Lake’s Delta tables were instrumental in managing these

large datasets. All input data was organized as agent-partitioned

Delta tables, and the final predictions are also packaged as a Delta

table for consistency.

One of the main challenges we faced was the overhead associated

with reading the large Delta tables containing the train and test

trajectories, as well as writing the output Delta tables with the

predictions. The train trajectories dataset alone, sampled at 1Hz

frequency, occupied up to 1TB of S3 storage. Transferring such a

large dataset from S3 to an EC2 node was found to be a significant

bottleneck. Procuring a high-capacity instance with 128 CPU cores

to process all agents on one single node, for example, would have

increased costs significantly due to the I/O overhead and compute

overhead, adding another layer of complexity.

To tackle this challenge, we implemented a strategy where mul-

tiple low-capacity CPU nodes were provisioned, with each node

responsible for processing a distinct subset of agents from the input

Delta table. Since the input data was partitioned by agent, each

agent’s trajectory was stored in a separate folder. We leveraged this

structure to enable scalable data reading operations using PySpark’s

capability to manipulate Delta tables. By specifying the agent’s

folder path in the pandas.read_parquet function, we efficiently

loaded the data for each agent. It is important to note that this

approach requires a clean Delta table; the presence of unnecessary

parquet files in the agent folders could necessitate an additional

pre-processing step to clean the input Delta table. Fortunately, our

input Delta table was already clean, eliminating the need for this

preprocessing step. We deployed multiple parallel CPU-optimized,

low memory compute instances, which are both cost-effective and

readily available, to process subsets of agents concurrently.

In theMARGgeneration stage, all nodes in the agent-level TERGs

with a stop duration greater than one hour were passed on. This

stage involved using these stop points to create a pseudo MARG

from the training TERGs. Each test TERG was then compared

against the training MARG to generate agent-level and point-level

predictions for every agent. The decision-maker, or fusion module,

at the final stage, aggregated these predictions and saved the results

into the output S3 storage bucket (represented in green in Figure 5).

5 Future Work and Discussion
While ReeFRAME has demonstrated its effectiveness in modeling

and detecting anomalies in large-scale human trajectory datasets,

there are several avenues for future work that could further enhance

its capabilities and applicability:

(1) Differentiable Reeb Graph Parameters: One of the main

challenges in our current approach is the lack of differen-

tiable parameters in the construction of Reeb graphs, such

as 𝜏 and 𝜖 . Developing a method to make these parameters

differentiable with respect to a loss function would allow for

more seamless integration with machine learning models,

enabling end-to-end training and optimization.

(2) Handling Noisy GPS Data: GPS data often contains noise

due to various factors, including signal loss, multipath effects,



ReeFRAME: Reeb Graph based Trajectory Analysis Framework to Capture Top-Down and Bottom-Up Patterns of Life GeoAnomalies’24, October 29, 2024, Atlanta, GA, USA

and device inaccuracies. Future work could focus on improv-

ing the robustness of ReeFRAME to noisy data, perhaps by

incorporating advanced filtering techniques or leveraging

machine learning methods to correct or smooth the noisy

trajectories before Reeb graph construction.

(3) Coordinated Movements: Another area of interest is the
detection and analysis of coordinated movements among

groups of agents. Current methods focus primarily on indi-

vidual trajectories, but many real-world scenarios involve

agents moving in groups with shared objectives. Enhancing

ReeFRAME to model and detect such coordinated behav-

iors could provide deeper insights into group dynamics and

collective anomalies.

(4) Weekday vs. Weekend Trajectory Patterns: Although
the current experiments utilize ’daily’ trajectories without

differentiating betweenweekdays andweekends, futurework

could explore this distinction. It is possible that treating

weekday and weekend behaviors separately could improve

TERG modeling, as agents may exhibit significantly different

behaviors depending on the day.

(5) Cloud-Based Enhancements: While the current version

of ReeFRAME is optimized for cloud deployment, there is

potential for further improvements. For instance, exploring

serverless architectures or containerized microservices could

offer even greater scalability and flexibility. Additionally, im-

plementing real-time anomaly detection capabilities on the

cloud could enable ReeFRAME to be used in time-sensitive

applications, such as traffic management or emergency re-

sponse.

(6) Merging Reeb Graphs: Finally, there is the potential to

explore different methods for merging Reeb graphs from

different agents or time periods. This could be particularly

useful for long-term monitoring of patterns or for analyzing

the evolution of behavior over time. Developing efficient al-

gorithms for graph merging while maintaining the integrity

of the original structures could open up new possibilities for

trajectory analysis.

In summary, ReeFRAME is an efficient tool for analyzing hu-

man mobility patterns and detecting anomalies. We are working

towards incorporating the above proposed enhancements, which

could significantly broaden ReeFRAME’s applicability and improve

its performance in a variety of real-world scenarios.

6 Acknowledgement
This work is supported by the Intelligence Advanced Research

Projects Activity (IARPA) via Department of Interior/ Interior Busi-

ness Center (DOI/IBC) contract number 140D0423C0057. The U.S.

Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright annotation

thereon. Disclaimer: The views and conclusions contained herein

are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed

or implied, of IARPA, DOI/IBC, or the U.S. Government.

References
[1] Amazon Web Services. Parallel computing on aws, 2024. Accessed: 2024-08-17.

[2] Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank

Staals. Trajectory grouping structure. In Workshop on Algorithms and Data

Structures, pages 219–230. Springer, 2013.

[3] Diansheng Guo, Shufan Liu, and Hai Jin. A graph-based approach to vehicle

trajectory analysis. Journal of Location Based Services, 4(3-4):183–199, 2010.

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[5] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. A

survey on deep learning for human mobility. ACM Computing Surveys (CSUR),

55(1):1–44, 2021.

[6] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel.

Deep learning for anomaly detection: A review. ACM computing surveys (CSUR),

54(2):1–38, 2021.

[7] A Pentland, N Eagle, and D Lazer. Inferring social network structure using

mobile phone data. Proceedings of the National Academy of Sciences (PNAS),

106(36):15274–15278, 2009.

[8] Shuyao Qi, Panagiotis Bouros, Dimitris Sacharidis, and Nikos Mamoulis. Effi-

cient point-based trajectory search. In International Symposium on Spatial and

Temporal Databases, pages 179–196. Springer, 2015.

[9] S Shailja, Vikram Bhagavatula, Matthew Cieslak, Jean M Vettel, Scott T Grafton,

and BS Manjunath. Reebundle: a method for topological modeling of white

matter pathways using diffusion mri. IEEE Transactions on Medical Imaging,

2023.

[10] S Shailja, Jefferson W Chen, Scott T Grafton, and BS Manjunath. Retrace: Topo-

logical evaluation of white matter tractography algorithms using reeb graphs.

In International Workshop on Computational Diffusion MRI, pages 177–191.

Springer, 2023.

[11] Yoshihisa Shinagawa, Tosiyasu L Kunii, and Yannick L Kergosien. Surface coding

based on morse theory. IEEE computer graphics and applications, 11(05):66–78,

1991.

[12] QuanWang, ZhendongMao, BinWang, and Li Guo. Knowledge graph embedding:

A survey of approaches and applications. IEEE transactions on knowledge and

data engineering, 29(12):2724–2743, 2017.

[13] Jun Zeng, Xin He, Haoran Tang, and Junhao Wen. A next location predicting

approach based on a recurrent neural network and self-attention. In Collaborative

Computing: Networking, Applications andWorksharing: 15th EAI International

Conference, CollaborateCom2019, London, UK, August 19-22, 2019, Proceedings

15, pages 309–322. Springer, 2019.

[14] Bowen Zhang, S. Shailja, Chandrakanth Gudavalli, Connor Levenson, Amil Khan,

and B. S. Manjunath. Reespot: Reeb graph models semantic patterns of normalcy

in human trajectories, 2024.

[15] Dongzhi Zhang, Kyungmi Lee, and Ickjai Lee. Mining hierarchical semantic

periodic patterns from gps-collected spatio-temporal trajectories. Expert Systems

with Applications, 122:85–101, 2019.

[16] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation mode

from raw gps data for geographic applications on the web. In Proceedings of the

17th international conference on World Wide Web, pages 247–256, 2008.

Received 8 September 2024; revised 1 October 2024; accepted 5 October

2024


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Temporal Reeb Graph Construction (TERG)
	3.2 Making Temporal Reebs Describable
	3.3 Multi-Agent Reeb Graphs (MARGs)
	3.4 Fusing TERGs with MARGs

	4 Experiments
	4.1 Datasets
	4.2 Feature Extraction, Hyperparameter Tuning, and Results
	4.3 Scalable Inference on Cloud

	5 Future Work and Discussion
	6 Acknowledgement
	References

