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ABSTRACT
The stability concept is a widely employed criterion for determining
the optimal number of clusters in non-spatial datasets. This prin-
ciple posits that an algorithm should successfully identify similar
clusters across various perturbed instances of the data. In this study,
we extend the application of stability concepts to spatial anomaly
detection algorithms in the context of disease rate data. Our ap-
proach involves introducing novel methods for introducing noise
to a singular instance of a disease map while preserving its spatial
pattern, even in the absence of knowledge about the underlying
distribution. Additionally, we present innovative metrics to assess
the stability of spatial anomaly detection algorithms. Furthermore,
we demonstrate the utility of the stability concept in analyzing
real-world datasets. This involves aiding in the selection of the
most suitable spatial anomaly detection algorithm for the given
data, pinpointing the epicenter of the spatial anomaly, and quanti-
fying the confidence level of the method for each area on the map.
Importantly, our proposal is agnostic to the spatial configuration of
the map, the underlying distribution of the data, the chosen spatial
anomaly detection algorithm, or any prior information.
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1 INTRODUCTION
The significance of rapid epidemiological surveillance methods and
improved predictive capacities has become more apparent in recent
years, influencing the strategies employed by public health authori-
ties in implementing epidemiological surveillance systems to track
disease incidence. In conjunction with feedback from the general
populace, these systems produce multiple localized spatial zones in-
dicating heightened disease risk compared to the surrounding areas.
For cancer surveillance, for instance, the current definition adopted
by the US Center for Disease Control (CDC) is: “a cancer cluster is
a greater than expected number of cancer cases that occurs within
a group of people in a geographic area over a defined period of
time” [1]. Suspect clusters require some response to community
concerns and potentially a more thorough and costly investigation.
Trumbo [44] reports that approximately 1,100 cluster investigations
were requested in 1997 in the US while state health departments re-
ceived from 1,300 to 1,650 requests to investigate suspected cancer
clusters in the same period [15]. According to Thun and Sinks [43],
the latest available public information, more than 1,000 inquiries
about suspected cancer clusters must be responded to by USA state
and local health departments annually.

The spatial cluster detection is an epidemiological and public
health task that aims at detecting geographically contiguous
areas that are anomalous with respect to certain reference frame-
work, usually a generative probability distribution model [1, 21].
However, from the data mining (DM) and machine learning (ML)
point of view, this is an unfortunate misnomer. Different from the
usual clustering task in DM and ML, the objective is not to aggre-
gate the small areas (such as Census counties) with similar risks
into larger regions by partitioning the geographical map, as the
map under analysis is known to have relatively homogeneous risk
all over. However, there may be a few areas covering a small re-
gion with an increased risk. What is called spatial cluster detection
is the detection of that spatial anomaly, the small region where
the risk is larger than in the rest of the map. Therefore, a more
appropriate name for this task should be spatial disease anomaly
detection (SDAD). To avoid mixing the usual ML/DM clustering
task with such spatial anomalies detection, we will avoid using
“spatial cluster”, the CDC chosen name.

Health authorities encounter a significant challenge due to the
sparse distribution of cancer cases, often resulting in their concen-
tration in specific locations and periods purely by chance, unre-
lated to underlying population risks. Boyle et al. [3] cite numerous
real-life instances where extreme cancer incidence occurred in
small areas. One such example is the occurrence of eight leukemia
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cases over 12 years in Fowey, an English village with only 2,320
inhabitants, yielding an incidence rate of 28.8 per 100,000, which
is considerably higher than 5.0, the baseline rate [16]. Similarly,
in Newquay, a small town on the north coast of Cornwall, Eng-
land, with a population of 19 thousand, 17 cases were registered
within a half-mile radius between 1948 and 1959 [49]. Despite ex-
tensive investigations, no underlying risk factors were identified in
most of these instances, with chance remaining the most plausible
explanation for the clustering of cases in spatial anomalies. Yet,
inquiries unveiled that certain clusters stemmed from particular
cancer-causing substances present in the environment. According
to one review of 576 cancer cluster investigations, only 72 of the
apparent clusters (less than 12%) confirmed a real increase in cancer
rates [14]. However, public health authorities must address a large
number of inquiries and respond to each one, even though most
turn out to be false alarms.

The evaluation of SDAD algorithms typically involves assessing
statistical power, which gauges the significance of the spatial anom-
aly identified by the algorithm, along with traditional machine
learning (ML) metrics like precision and recall, which measure
the algorithm’s ability to detect the true anomaly. However, this
framework proves inadequate for real-world scenarios due to three
primary reasons.

The first reason pertains to the spatial nature of the dataset.
Unlike the typical ML scenario with many independent instances,
the data in spatial analysis consist of a single map divided into
small areas, each containing counts of disease cases along with
underlying population sizes. This setup resembles having a single
time series from which to learn temporal patterns, rather than
multiple independent realizations of the same stochastic process.
In the spatial context, the conventional cross-validation approach
based on training/test splits of the diseasemap dataset is not feasible.
Attempts to create such splits by removing areas or cases from
the map result in highly biased or distorted datasets. Incomplete
maps used for anomaly detection introduce inefficiencies while case
removal underestimates high-risk spatial anomalies. Consequently,
there is no viable option for conducting a training/testing split,
leading to overfitting and diminished generalization capacity in the
learning process.

The second reason behind the misbehavior of metrics stems from
the nature of the data type under consideration. Decisions are based
on disease rates, which represent the ratio between the number
of cases and the underlying population size in each area. This as-
pect also elucidates why traditional clustering ML methods, such
as DBSCAN, are unsuitable for this problem. Each data point (i.e.,
each rate measured in a small area) exhibits different variance and
substantial variability. Disease rates are highly sensitive to minor
variations in the input disease count data, particularly in regions
with small populations like rural areas. Even minor fluctuations
of one or two disease cases in such areas can significantly impact
disease rates, highlighting the widely varying variances among
different areas. While areas with large populations typically exhibit
stable and low-variance rates, sparsely populated regions experi-
ence substantial rate variations even with minor perturbations in
disease counts. It is concerning that areas with the most extreme
rates—whether high or low—attract the most attention on a disease
map, yet they provide the least reliable information. In essence, data

from different areas carry varying weights of evidence regarding
the presence of disease clusters. We advocate for incorporating
these distinct data evidence weights into the evaluation metrics.

The third reason for the inadequacy of metrics lies in the discrep-
ancy between what is considered a “true spatial disease anomaly”
and the evidence provided by the observed data. As outlined in
Section 3, this fundamental challenge prompts us to adopt the clus-
tering stability approach [46]. Consider an area known to belong
to the disease cluster; however, when generating data, it may have
zero disease cases in approximately 70% of instances. In other words,
most of the time, there is no data evidence indicating that the area
has a higher risk than the rest of the map. This scenario exemplifies
the no-free lunch theorem [48] in action, signifying that no single
spatial anomaly detection algorithm can be optimal for every pos-
sible data instantiation. The concept of stability proves useful by
characterizing an area as part of a spatial anomaly if it consistently
exhibits such characteristics across multiple spatial maps generated
from the same data-generating process. In essence, a SDAD algo-
rithm should yield similar results when applied to several spatial
maps originating from the same underlying data.

In this paper, we tackle these challenges by proposing solutions
grounded in the principle of cluster stability. Our contributions can
be summarized as follows:

(1) We introducemethods to generate several spatial maps
from the same data-generating process as the single
observed disease map. Unlike conventional methods in
SDAD literature that rely on artificial and probabilistic-based
synthetic maps, our proposed methods—the spatial bootstrap
and a rewiring technique—offer alternatives free of stochastic
model assumptions. These methods enable cross-validation
algorithms for SDAD. Importantly, we demonstrate that
these random maps preserve the same spatial patterns as
the observed data, ensuring that any unknown spatial sig-
nal present in the data, such as the potential existence of a
true spatial disease cluster, remains unaffected. The differ-
ences between the observed and random maps arise solely
from random disturbances unrelated to any true underlying
risk reflected in the original data. This approach yields a
substantial number of datasets, enhancing generalization
capabilities.

(2) We propose two metrics to evaluate the stability of
SDAD algorithms. Effective algorithms should identify
a spatial anomaly that exhibits stability across numerous
spatial maps generated from the same unknown spatial data-
generating process as the single observed disease map. These
metrics aim to gauge the robustness of methods against small
data perturbations that do not affect the underlying gener-
ating data distribution, ensuring that the identified spatial
anomalies remain consistent and reliable.

(3) We propose a framework to quantify the weight of the
evidence that an area actually belongs to the real anom-
aly. In contrast to our second contribution, which focuses
on evaluating the anomaly detection algorithm’s stability,
this framework assesses the confidence level regarding the
inclusion of a detected area in the true underlying anomaly.
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It offers a means to address the challenges posed by the no-
free lunch theorem, wherein a seemingly inferior algorithm
may actually be the optimal choice for a specific application.
Our framework guides the selection of the most appropriate
algorithm for a given scenario, providing clarity amidst the
algorithm selection process.

2 RELATEDWORK
It is important to note that our paper focuses on modeling non-
infectious diseases, such as cancer surveillance. When modeling
the spatial patterns of infectious diseases like COVID-19, proba-
bility models typically account for the contagious nature of the
disease, where the presence of cases in one location increases the
likelihood of cases in nearby locations. This requires models that
capture spatial dependence or clustering, such as spatial autoregres-
sive models or point process models that include interaction terms
between individuals and explicitly account for temporal dynamics.
In contrast, for non-infectious diseases like cancer, the occurrence
of cases is generally independent of the presence of other cases
in nearby areas. This leads to the use of probability models that
assume spatial independence or incorporate explanatory covariates
to capture environmental or demographic risk factors. Thus, while
infectious disease models emphasize transmission dynamics and
spatial diffusion, non-infectious disease models focus more on iden-
tifying underlying spatial risk factors without considering direct
spatial interaction between cases.

The circular spatial scan statistic is the seminal statistical test and
still the most popular algorithm for the spatial anomaly detection
task [25]. It scans all circular regions over the map with different
radius and outputs that one maximizing a likelihood function. The
strength of this method is the delivery of a valid 𝑝-value for the
null hypothesis of no spatial anomaly overcoming the multiple
comparison problem. This 𝑝-value is computed through Monte
Carlo hypothesis testing. Over the years, many different algorithms
were presented, some having different shape restrictions [24, 34]
and others searching for irregular shapes [9, 40].

Spatial scan statistics analysis has been applied in the past years
in many fields such as public security, transportation, agriculture,
and especially in public health. Examples of recent applications are
the analysis of anemia in Ethiopia [10], malaria in Cambodia [37]
and fluoride concentrations in Tanzania [17]. During the COVID-19
pandemic, spatial scan statistics analysis has been applied in many
scenarios. Cordes and Castro [6] analyzed the relationship between
COVID-19 testing rates and positive cases in New York City while
Escobar et al. [11] investigated the impact of race/ethnicity on SARS-
CoV-2 testing, infections, and outcomes in Northern California.
Many other studies were published evaluating hotspots of COVID-
19 cases on several countries [18, 32]. Beyond the detection of
spatial disease clusters, clustered anomaly detection using scan
statistics is also applied in different computer science-related areas.
del Gobbo et al. [7] and Camacho et al. [5] applied scan statistics
in geolocated Twitter data to discover spatial anomalies of users’
opinions while Nguyen [35] aimed at detecting rumors spatially
using social media data. Scan statistics algorithms are also widely
employed in pattern and anomaly detection in graphs [4, 13, 47? ].

As a reviewer pointed out, there is a potential connection be-
tween the traditional machine learning literature on clustering
methods specialized for spatial objects and our problem of spatial
anomaly detection. Some studies have explored spatial clustering
with uncertain data. For instance, [50] proposed a model in which
statistical significance can be assigned to clusters detected by DB-
SCAN. Another approach is representative clustering [51], which
samples possible worlds, performs clustering on each, and then
identifies clusters that consistently appear across multiple worlds.

A further approach involves Bayesian modeling of the spatial
partitioning of maps based on rates [41, 42]. This method generates
a posterior probability distribution of spatial partitions, allowing
possible partitions to be ranked according to their probability.

In a recent position paper, Sculley et al.made an impacting state-
ment about how empirical rigor is not keeping pace with advances
in ML [38]: “The goal of science is not wins, but knowledge.” An
important aspect of rigorous empirical evaluation is to assess the
limits and shortcomings of evaluation metrics as well as the propo-
sition of more adequate metrics [12, 28]. Like us, many others are
taking a step back and reviewing the current state of the art of
different areas in ML through rigorous and thorough empirical
evaluations [2, 19, 29, 31, 36, 39, 45]. The SDAD task, in particular,
presents unique challenges and problems that necessitate new eval-
uation procedures [8]. In this paper, we discuss the peculiarities
and the evaluation metrics used in the SDAD task. While [8] revisit
traditionally used metrics for this task, we propose new ones.

Stability is a concept applied to find an appropriate number of
nonspatial anomalies in a dataset [27, 46]. It was also considered to
evaluate clustering solutions in particular data sets, such as time
series [20], images [33], and cell data [30]. An algorithm should
be able to detect nearly the same cluster under a slight perturba-
tion of the data. To the best of our knowledge, this concept has
never been explored before for the spatial anomaly detection task.
However, it can be very useful, mainly when dealing with sparse
data. Beyond the traditional metrics for the SDAD task, a spatial
anomaly detection algorithm should also be evaluated for its ability
to find the same spatial anomaly under slight perturbations. This
work proposes spatial anomaly stability as a necessary checkpoint
for anomaly interpretation and introduces a new systematic and
standardized analytical framework for the assessment of spatial
anomaly detection results.

3 DEFINITIONS AND PROBLEM STATEMENT
Consider a map partitioned into 𝑁 distinct areas, denoted by 𝑖 =
1, . . . , 𝑁 . Each area 𝑖 is characterized by its underlying population
size 𝑛𝑖 and the number of observed disease cases𝑦𝑖 within a specific
time frame. We model the occurrence of disease cases as a proba-
bilistic distribution, such as𝑦𝑖 ∼ Poisson(𝜃𝑖𝑛𝑖 ), where 𝜃𝑖 represents
the unknown incidence rate. The map is split into two disjoint sets:
a contiguous subset of areas, denoted as a spatial anomaly𝐶 , where
𝜃𝑖 = 𝜃1, and the remaining areas where 𝜃𝑖 = 𝜃0, with 𝜃1 > 𝜃0. The
objective of a SDAD algorithm is to identify a subset 𝐶 of areas
solely based on the underlying population 𝑛𝑖 and observed case
counts 𝑦𝑖 , aiming to accurately identify 𝐶 = 𝐶 . In this study, we
focus on detecting the presence of a single spatial anomaly. Con-
sequently, both 𝐶 and 𝐶 consist only of connected areas, ensuring
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that it is possible to travel between any pair of areas within each
set while passing exclusively through areas within the set.

All SDADmethods detect a geographical zone𝐶 if the associated
statistical test yields significance, typically indicated by a 𝑝-value
below a specified threshold, often set at 0.05 or 0.01. If the test fails
to reach statistical significance, no spatial anomaly is detected, and
the algorithm returns 𝐶 = ∅.

SDAD methods fall within the category of unsupervised clas-
sification. Unlike supervised classification, there exists no ground
truth against which to validate clustering outcomes. To evaluate the
performance of SDAD algorithms, synthetic datasets are commonly
employed due to the absence of labeled maps with true disease clus-
ters. These datasets introduce an artificial spatial anomaly into the
map, where a probabilistic distribution for disease counts 𝑦𝑖 in each
area is defined to yield a higher incidence rate 𝜃𝑖 within the spatial
anomaly. A substantial number 𝐾 of independent dataset instances,
each containing the same spatial anomaly, is generated, distributing
disease counts across the map according to the defined distributions.
The algorithm is then executed on each instance, resulting in the
detection of an anomaly𝐶𝑘 in instance 𝑘 . Performance metrics such
as precision, recall, and statistical power are computed by averaging
the results across instances. In Section 5, we detail the benchmark
dataset widely employed for evaluating SDAD algorithms. This
benchmark comprises numerous map datasets featuring spatial
anomalies of various sizes located within regions characterized by
rural (and small), mixed, or urban (and large) population.

3.1 Evaluation difficulties
Recognizing the necessity for rethinking evaluation measures, con-
sider a scenario where the true anomaly comprises four areas sit-
uated in a sparsely populated rural region (see Figure 1). We sim-
ulated disease counts with a much larger relative risk within the
spatial anomaly. Even so, area 4 had zero observed cases in 70% of
the simulated instances (one such instance is shown in the figure).
That is, in the majority of instances, there exists no evidence indicat-
ing that this anomaly area belongs to a genuine spatial anomaly, as
the observed count is zero, the smallest possible. Despite belonging
to the high-risk spatial anomaly, this area lacks disease cases. Such
occurrences are natural consequences of small populations and are
not uncommon.

The issue arises from the observation of zero disease cases in an
area, providing no evidence that its population faces a high-risk
situation. Strictly based on observed data evidence, we should re-
frain from including area 4 in a spatial anomaly unless we possess
prior reasons to incorporate it into 𝐶 . For instance, strong prior
beliefs dictating that the cluster must exhibit a circular shape may
compel the inclusion of areas with zero case counts into a cluster
estimate. A sparsely populated area surrounded by regions with a
high number of cases may prompt the aggregation of the zero count
area into the cluster, considering its small population. However, the
inclusion of a single additional case can lead to varying detected
clusters depending on the SDAD algorithm utilized. Real-world sce-
narios often involve slight data variations, such as case registration
errors or population count errors stemming from outdated records.
Therefore, SDAD algorithms should demonstrate robustness to

such minor variations, consistently identifying the same spatial
anomaly.

Figure 1: Map with the NE United States counties with their
female population and the corresponding disease cases.

The situation becomes more intricate when assessing the likeli-
hood of area 4 belonging to the spatial anomaly. Firstly, even if it
belongs to the cluster and exhibits a higher risk than the rest of the
map, observing zero disease cases is the most probable outcome
in this area. Its population is so minuscule that it would require
an immense relative risk to potentially produce even a single case.
Secondly, complicating the analysis further, the probability of ob-
serving zero cases is greater under the null hypothesis than under
the alternative hypothesis. In other words, even if area 4 belongs
to the spatial anomaly and possesses an underlying higher risk
than the rest of the map, observing zero cases is more indicative
of the not in the spatial anomaly scenario than of the in the spatial
anomaly scenario: P(𝑦𝑖 = 0 | 𝑖 ∉ 𝐶) > P(𝑦𝑖 = 0 | 𝑖 ∈ 𝐶).

In the first row of plots in Figure 2, the red line represents the
probabilities P(𝑦𝑖 = 𝑘 |𝑖 ∈ 𝐶) for the four cluster areas depicted in
Figure 1, with the horizontal axis indicating the possible number of
disease cases 𝑘 . The blue line connects the probabilities P(𝑦𝑖 = 𝑘 |𝑖 ∉
𝐶), representing the probabilities of each possible count 𝑘 if the area
did not belong to the spatial cluster. A vertical dashed line indicates
the number of cases observed in these areas in the simulation
illustrated in Figure 1. In the first three areas, the likelihood of the
observed count 𝑦𝑖 is higher under the spatial anomaly hypothesis
than under the null hypothesis, aligning with our expectations.
However, in area 4, a peculiar behavior is observed: the value𝑦4 = 0
is more probable under the null hypothesis than under the spatial
anomaly hypothesis, despite our prior knowledge that area 4 belongs
to the spatial anomaly.

In summary, the crux of the issue lies in the fact that observing
zero counts in this area is a very common occurrence. Indeed, out
of the 10,000 simulations of this spatial anomaly, 6, 947 instances
resulted in 𝑦4 = 0. This leads to a puzzling scenario where an area
is part of a high-risk zone, yet there is a 0.7 probability of observing
zero cases there. This discrepancy arises because the definition of
spatial anomaly is based on the generative probabilistic process that
generates random cases in each area, rather than on the realized
data instantiation.
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Figure 2: First Row of Plots: P(𝑦𝑖 = 𝑘 |𝑖 ∈ 𝐶) (red line) and
P(𝑦𝑖 = 𝑘 |𝑖 ∉ 𝐶) (blue line) are depicted for the four areas in
Figure 1. The vertical dashed lines represent the observed
cases. Second Row of Plots: Observed values in a different
simulation, along with a fifth area neighboring the anomaly
but not belonging to it.

3.2 Precision and recall issues
The precision metric is also influenced by these random fluc-
tuations. The second row of plots in Figure 2 illustrates another
simulation under the same hypothesis of a high-risk spatial anom-
aly in the four areas. Observe that the random number generation
produced 𝑦4 = 1 this time, a situation more aligned with the hy-
pothesis that area 4 may belong to the spatial anomaly. However,
we also evaluate the result 𝑦8 = 2 in area 8, a neighboring area of
this spatial anomaly. In this instance, although area 8 is not part of
the cluster, its observed value is more compatible with the spatial
anomaly hypothesis than with the null hypothesis, owing to the
nature of the generative process and its small population.

Finally, consider the recall metric calculated for the cluster
composed of the four areas shown in Figure 1. Recall is estimated as
the average of |𝐶∩𝐶 |/4 over thousands of independent simulations
of this ratio. However, one of the areas in the denominator, area 4,
has zero cases in approximately 70% of the simulations. The decision
to count or not count this area in the numerator has a significant
impact, as it can add or subtract 0.25 from ametric bounded between
0 and 1. Thus, we advocate that an area with zero disease cases
(𝑦𝑖 = 0) should not heavily penalize any SDAD method if it returns
𝑖 ∉ 𝐶 (if it leaves area 𝑖 out of the detected cluster). The rationale
is that a data-driven algorithm, one not based on prior knowledge
about the true spatial anomaly shape, should not be excessively
penalized for failing to detect such an area. Hence, there is a need
to rethink the evaluation metrics for this SDAD task.

In the next section, we adopt a principled probabilistic approach
to redefine the usual metrics for this task, giving less weight to
regions where the disease incidence rate varies dramatically due to
small data fluctuations.

4 STABILITY METRICS FOR SDAD
4.1 Sampling methods
In typical ML applications, we often partition the dataset into train-
ing and testing samples to assess the results without imposing any
distributional assumptions about the data generation process. This
evaluation approach is application-specific and entirely data-driven,
bypassing the need for synthetic datasets. By doing so, we mitigate
the risks of overfitting and counteract biased outcomes. However,
given the unknown nature of the true anomaly and the underly-
ing distribution, generating additional instances under the same
model to evaluate various SDAD methods becomes non-trivial.
This presents a unique challenge in assessing the efficacy of such
methods.

Here, we introduce two novel methods for generating additional
instances of a single disease map: the bootstrap and the rewiring
samples. The underlying concept in both methods is to generate
maps for multiple rounds of cross-validation. The maps originate
from the same statistical population and preserve the same spatial
pattern observed in the original dataset, regardless of our knowledge
about the true probability distribution generating the observed data.

4.1.1 Bootstrap samples. Let 𝑍𝑖 𝑗 = 1, if the 𝑗-th individual in area
𝑖 is a disease case, and 𝑍𝑖 𝑗 = 0, otherwise. With a disease rate (per
capita) equal to 𝜃 , we have a binomial distribution for the number
of cases:

(𝑦𝑖 |𝑛𝑖 ) =
𝑛𝑖∑︁
𝑖=1

𝑍𝑖 𝑗 ∼ Bin(𝑛𝑖 , 𝜃 ) ≈ Poisson(𝑛𝑖𝜃 ) .

The Poisson approximation is valid when 𝜃 is close to zero, which
is usually the case for typical diseases such as site-specific cancers.
Independently for each 𝑗-th individual in area 𝑖 , generate the binary
indicator𝑊𝑖 𝑗 ∼ Bernoulli(𝜋) using a spatially constant probability
hyper-parameter 𝜋 ∈ (0, 1). Then, conditionally on 𝑛𝑖 , we have:

(𝑛∗𝑖 |𝑛𝑖 ) =
𝑛𝑖∑︁
𝑗=1

𝑊𝑖 𝑗 ∼ Bin(𝑛𝑖 , 𝜋)

and

(𝑦∗𝑖 |𝑛𝑖 ) =
𝑛𝑖∑︁
𝑗=1

𝑊𝑖 𝑗 · 𝑍𝑖 𝑗 ∼ Bin(𝑛𝑖 , 𝜋𝜃 )

The collection {(𝑛∗
𝑖
, 𝑦∗
𝑖
), 𝑖 = 1, . . . , 𝑁 } is a randomly thinned

version of the original map with {(𝑛𝑖 , 𝑦𝑖 ), 𝑖 = 1, . . . , 𝑁 }. The map
with this 𝜋-thinned random sample of cases and population is called
a bootstrap sample or bootstrap map).

The important point is that, if there is any spatial anomaly in
the original data, it is randomly reflected with the same spatial
pattern in the bootstrapped map. The differences are due to ran-
dom fluctuations not associated with the intrinsic disease rates 𝜃𝑖 .
They are randomly thinned versions of the original map. Indeed,
suppose that some areas have high incidence disease rates pro-
ducing a map with spatially varying rates. Let 𝑦𝑖 ∼ Bin(𝑛𝑖 , 𝜃𝑖 ) ≈
Poisson(𝑛𝑖𝜃𝑖 ). As the bootstrap probability 𝜋 does not vary spa-
tially, the observed map spatial pattern is reflected on the bootstrap
map: 𝑦∗

𝑖
∼ Poisson(𝑛∗

𝑖
𝜋𝜃𝑖 ). Hence, the odds between disease rates

from any pair of areas remain the same as in the original map. For
example, while the odds between rates from areas 𝑖 and 𝑗 is 𝜃𝑖/𝜃 𝑗
in the original map, it is equal to (𝜋𝜃𝑖 )/(𝜋𝜃 𝑗 ) in the new bootstrap
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samples. The spatial pattern of the disease rates 𝜃𝑖 is retained in
the bootstrapped map, whatever this spatial pattern is.

By randomly sampling𝑊𝑖 𝑗 independently, we generate 𝐵 boot-
strap maps with different disease and population counts from our
original data map. Each bootstrap disease map in this stack of 𝐵
maps retains the same spatial pattern as the original map but differs
in two respects. First, it has a smaller number of cases and popula-
tion. Each area has approximately a proportion 𝜋 of the original
cases and population counts. Second, as the selection of retained
cases and population is random, the bootstrapped maps differ. In
short, this technique generates different maps from the real data
but retaining the same spatial pattern, so one can test the resilience
of the SDAD algorithms with them. We show how to explore this
in Section 4.2.

4.1.2 Rewiring. Rewiring is a different way to generate pseudo
maps that retain the spatial pattern from the original map but pro-
vide enough diversity to allow generalization capabilities for the
algorithms. The population size is not altered, only the number
of cases of each area can change. In contrast with the bootstrap
approach, the total number of cases in the map,

∑
𝑖 𝑦𝑖 , is kept con-

stant. The only change is that some of the observed cases may be
randomly assigned to neighboring areas. The main idea is that each
area may rewire a small proportion of its cases to neighboring areas.
As all areas are rewiring, the expected number of cases in each area
is kept approximately constant.

Let 𝜋 ∈ (0, 1) be a hyper-parameter. Rather than the true ob-
served number 𝑦𝑖 of cases in each area, we generate a random
number 𝑦∗

𝑖
= 𝐾𝑖 + 𝑅𝑖 by keeping approximately a proportion 𝜋 of

its original count 𝑦𝑖 (the 𝐾𝑖 count) plus additional cases coming
from the neighbors (the𝑅𝑖 count). More specifically,𝐾𝑖 ∼ Bin(𝑦𝑖 , 𝜋).
The neighbors of area 𝑖 receive the residual 𝑦𝑖 − 𝐾𝑖 cases. This dis-
tribution is made according to a multinomial distribution, with the
probability of selecting a given neighboring area proportional to its
population. To be precise, let 𝑉𝑖 𝑗 be a binary indicator with 𝑉𝑖 𝑗 = 1
if areas 𝑖 and 𝑗 share boundaries, and 𝑉𝑖 𝑗 = 0 otherwise. We set
𝑉𝑖𝑖 = 0. Then,

𝑅𝑖 =

𝑁∑︁
𝑗=1
𝑉𝑗𝑖 · Bin

(
𝑦 𝑗 − 𝐾𝑗 ,

𝑛𝑖∑
𝑘 𝑉𝑗𝑘𝑛𝑘

)
.

As a consequence, the rewired expected disease rate in area 𝑖 is
given by

E

(
𝑦∗
𝑖

𝑛𝑖

)
= 𝜋𝜃𝑖 +

1
𝑛𝑖

𝑁∑︁
𝑗=1

𝑉𝑗𝑖E

(
(𝑦 𝑗 − 𝐾𝑗 )

𝑛 𝑗∑
𝑘 𝑉𝑖𝑘𝑛𝑘

)
≈ 𝜋𝜃𝑖 +

1 − 𝜋
𝜈

𝜈𝜃𝑖 ≈ 𝜃𝑖

where 𝜃𝑖 is the average of 𝜃 𝑗 values over the neighbors of area 𝑖
and 𝜈 is the average number of spatial neighbors of a given area in
the map. For example, 𝜈 = 5.6 for the USA continental counties.

Hence, the expected rewired rate in each area is the same as in
the original unknown mechanism that generates the observed data.
As in the bootstrapped maps, the rewired maps will retain approxi-
mately whatever spatial pattern is present in the original map. This
technique simulates scenarios where an incorrect assignment of
cases to regions is possible, so one can test the resilience of the
algorithms under this circumstance.

The choice of the 𝜋 parameter is important in both, the Rewiring
and Bootstrap methods. With 𝜋 equal to 1, all generated instances
will be exactly the same as the original data. On the other hand,
the smaller the value of 𝜋 , the greater the randomness added and,
therefore, the more distant from the spatial pattern of the original
data the perturbed instances will be. Ideally, the value of 𝜋 should
be close to but not equal to 1. Section 5.1 shows how to visually
find a good value for the parameter 𝜋 for real datasets.

4.2 New Performance Measures: Stability
Metrics

In this section, we introduce our new metrics to evaluate the sta-
bility of SDAD algorithms. In non-spatial settings, an increasingly
popular method to select the number of clusters is based on the sta-
bility idea [46]. The main idea is that a clustering algorithm should
obtain similar results if applied to several datasets from the same
data-generating distribution. While cluster detection algorithms
are used to identify the subset of areas that are most likely to have
a high risk, stability measures are used to indicate whether the
identification of subsets is robust. We adapt this general philosophy
to the spatial disease cluster problem. None of the stability algo-
rithms proposed for non-spatial settings can be applied due to the
spatial nature and the type of data, so new approaches need to be
developed.

By the stability principle, a SDAD algorithm is stable if it returns
similar results over the 𝐾 instances generated under the same prob-
abilistic model. In Section 5, we show that our stability metrics can
be applied in two distinct situations. One considers the stability of
a single cluster detected in a specific application, with no knowl-
edge about the data-generating distribution. In this case, we use the
instances produced by the bootstrap or rewiring methods described
previously. The other is concerned with the typical performance
evaluation of several SDAD algorithms, which resort to synthetic
data instances generated by a known and user-determined probabil-
ity distribution such as that described in Section 3. We distinguish
these two types of use of our stability metric in Section 5.

For the 𝑖-th area in the map, we calculate the proportion 𝑝𝑖 of
times among the 𝐾 instances it was detected as part of the spatial
anomaly by the considered SDAD algorithm: 𝑝𝑖 =

∑
𝑘 I(𝑖 ∈ 𝐶𝑘 )/𝐾

where I(𝐴) is the binary indicator for the event 𝐴 occurrence. This
notation is adopted to clearly indicate that 𝑝𝑖 is an unbiased em-
pirical estimator of the true but unknown associated probability 𝑝𝑖 .
We define the set of areas 𝐷 that are detected in more than half of
the instances by the given SDAD algorithm: 𝐷 = {𝑖 ∈ {1, . . . , 𝑁 } :
𝑝𝑖 ≥ 0.5}. These are the areas that are systematically detected when
slightly perturbed data are input. Let 𝐷̄ represent all the other areas
with 0 < 𝛼 ≤ 𝑝𝑖 < 0.5 where 𝛼 is a hyper-parameter. These are
areas that have been occasionally detected.

We introduce two sets of metrics. The first set measures the
stability of the retrieved spatial anomaly 𝐶𝑘 across the 𝐾 instances.
This metric focuses on whether the algorithm consistently identifies
the same set of areas 𝐶𝑘 , regardless of whether these areas truly
constitute an anomaly. It evaluates the stability of the identified
areas across the𝐾 instances, prioritizing consistency over algorithm
precision.
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Figure 3: A typical satisfactory frequency histogram for 𝑝𝑖
of all areas in the map, an ideal frequency histogram for 𝑝𝑖 ,
and an example of the values of an unstable algorithm.

For the first metric, we define a measure for the systematically
detected areas in the set 𝐷

𝑆id =

∑𝑁
𝑖=1 [I(𝑖 ∈ 𝐷 ) (𝑝𝑖 − 0.5)/0.5]∑𝑁

𝑖=1 I(𝑖 ∈ 𝐷 )
.

Similarly, we define a stability measure for the areas in 𝐷̄ , mea-
suring the algorithm capacity of keeping the occasionally detected
areas out of 𝐶𝑘 :

𝑆not-id =

∑𝑁
𝑖=1 [I(𝑖 ∈ 𝐷̄ ) (1 − 𝑝𝑖/0.5) ]∑𝑁

𝑖=1 I(𝑖 ∈ 𝐷̄ )
.

Ideally, we want the SDAD algorithm to produce 𝑆id = 1 and
𝑆not-id = 1, showing that the method has detected one single set
of areas in all map instances. To wrap the two measures into a
single index, we take the 𝐹1-score, calculating their harmonic mean:
𝑆 = 2(𝑆id ∗ 𝑆not-id)/(𝑆id + 𝑆not-id).

Figure 3 gives an intuitive overview of the metrics. It shows an
example of a typical frequency histogram for the 𝑝𝑖 values obtained
from all areas in the map. In the ideal situation, we wish that all 𝑝𝑖
values for the areas in 𝐷 are equal to or near 1, showing that the
same set of areas was consistently detected in the map instances.
For the set 𝐷̄ , we wish that all 𝑝𝑖 values are near zero, meaning
that the not systematically detected areas were returned almost in
no instance. The worst scenarios are the ones where the 𝑝𝑖 values
fluctuate around 0.5. In these scenarios, the algorithm detected very
distinct clusters along the simulations.

In contrast with the first set of metrics, the second set of metrics
can be used only with synthetically generated datasets, when we
know that there is a real spatial anomaly 𝐶 in the map and which
are the areas that comprise it. These metrics evaluate if the SDAD
algorithm is able to consistently identify the ground truth spatial
anomaly 𝐶 and to avoid detecting the areas outside this true anom-
aly. That is, they measure the algorithm’s ability to stably find the
true anomaly even under data perturbation. Ideally, all the areas in-
side the true anomaly should be detected in all instances (resulting
in 𝑝𝑖 equals to 1) and the remaining areas should not be detected
in any simulation, giving us 𝑝𝑖 equals to zero. The stability for the
positive areas is an average 𝑆+ over the instances while, for the
negative areas (those outside the true cluster), it is 𝑆− and measured
with the signed distance between 𝑝𝑖 and 0. Also, we combine 𝑆+
and 𝑆− in an harmonic mean: 𝑆sign = 2(𝑆+ ∗ 𝑆−)/(𝑆+ + 𝑆−). That is,

𝑆+ =

∑𝑁
𝑖=1 [I(𝑖 ∈ 𝐶)𝑝𝑖 ]∑𝑁
𝑖=1 I(𝑖 ∈ 𝐶)

and

𝑆− =

∑𝑁
𝑖=1 [I(𝑖 ∉ 𝐶)I(𝑝𝑖 >= 𝛼) (1 − 𝑝𝑖 )]∑𝑁

𝑖=1 I(𝑖 ∉ 𝐶)I(𝑝𝑖 >= 𝛼)
.

5 RESULTS
5.1 Using the New Metrics in Real Datasets
We illustrate how our stability metrics 𝑆id, 𝑆not-id, and 𝑆 based on
the bootstrap or rewiring samples are useful in the analysis of real
data. That is, a user selects a SDAD algorithm, applies it to a real
disease map, and a set 𝐶 of areas is detected. We do not know if
there is a true high-risk spatial anomaly 𝐶 present in the map or
which areas it comprises. For each area 𝑖 ∈ 𝐶 eventually detected,
we can obtain a stability measure associated with its membership in
bootstrap or rewiring-generated instances. Also, we can compare
different SDAD algorithms in that specific data analysis based
on the stability metrics. The rationale is that, if there is no prior
information about the anomaly shape, the stability measures help
to identify the most appropriate SDAD algorithm to be used in that
specific application. If an anomaly detected by an algorithm proves
to be unstable when perturbing slightly the data, we have evidence
that the algorithm is not able to identify the cluster confidently.
This is so either because there is uncertainty about some areas
having high rates or because the shape of the spatial anomaly is
not compatible with the algorithm constraints.

We select two popular methods, the Circular Spatial Scan Sta-
tistics (CSSS) [22] and FleXScan [40], to illustrate how one can
compare different algorithms using our measures. The first method
constrains the spatial anomaly shape, scanning only over strictly
circular-shaped candidates. A circular-shaped anomaly means that
all areas’ centroids are located within a certain circle. A circular-
shaped anomaly is composed of all areas’ centroids located within
a certain circle. The second method detects spatial anomalies with
any shape within a circular region up to a predefined maximum
radius. We considered candidate anomalies with a population of
up to 50% of the total population in the study region. For FleXS-
can, we considered all irregularly sized anomalies composed of up
to 10 areas. We adopted the Poisson model to calculate the like-
lihood function. Although the results are presented considering
these two methods, our approach is agnostic regarding the selected
method. For example, we can use our stability-based methods with
the approach proposed by [50], which was able to obtain statistical
significance for spatial clusters detected by the DBSCAN algorithm.

The first step is to generate 𝐾 perturbed instances of the original
map using a sampling method (bootstrap or rewiring). One or more
SDAD algorithms are run in each of these 𝐾 pseudo-maps, return-
ing a cluster 𝐶𝑘 , for 𝑘 = 1, . . . , 𝐾 . For each algorithm and each 𝑖-th
area in the map, we calculate the 𝑝𝑖 and we compute the stability
metrics 𝑆id, 𝑆not-id, and 𝑆 for each method. The most stable SDAD
algorithm for the given dataset is the one with higher 𝑆 . Observing
the 𝑝𝑖 value for each area, we can also have an idea about how
confident the method is for the result for that area.

To illustrate this use, we will impose a true spatial anomaly in
one map so we can verify how the metrics perform. However, this
ground truth knowledge will not be available in the practical appli-
cation of spatial anomaly detection and it is not used to calculate
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𝑆id, 𝑆not-id and 𝑆 . Figure 4 shows an example of the cluster identi-
fied by the CSSS and by the FleXScan algorithms for an irregularly
shaped cluster. The first row of plots corresponds to the circular
scan and the bottom row, to the FlexScan. The first column shows
what each of these methods detected as a spatial anomaly using
the original data. The true anomaly is shown in red, while the
returned areas are in blue. We used the bootstrap pseudo-maps
with 𝜋 = 0.9 to run this cross-validation. The areas in the second
column of maps are colored according to their 𝑝𝑖 values: the larger
the 𝑝𝑖 value, the darker the gray tone. The third column shows the
histogram of the 𝑝𝑖 values for all areas in the map. Calculating the
stability of each method for this scenario with 𝛼 = 0.05, we have
𝑆id = 0.57, 𝑆not-id = 0.59 and 𝑆 = 0.58 for the CSSS algorithm. For
FleXScan, we have 𝑆id = 0.89, 𝑆not-id = 0.84 and 𝑆 = 0.84. Thus,
although more flexible and prone to overfitting, FleXScan is more
stable and, therefore, preferable to the circular method in this par-
ticular dataset. We observe more 𝑝𝑖 values near 0.5 for the CSSS
method and, as a consequence, fewer areas with values with 𝑝𝑖 near
0 (detected in no instance) or 1 (detected in all instances). We have
evidence to believe that the anomaly is composed only of the areas
detected by the FleXScan method. Indeed, the true anomaly has
an irregular shape and can not be fitted into a perfectly circular
shape. When observing the number of simulations for each area
using both methods, we can see the center of mass at the actual
location of the real anomaly, in the southeast of the map.

We are able to assess how stable the algorithm is in each area by
looking at its 𝑝𝑖 value. Even for the areas 𝑖 belonging to the true
anomaly𝐶 , the value of 𝑝𝑖 can be very different due to the evidence
amount present in the data. Remember that small population areas
have highly unstable rates. Some areas, even if returned as part of
the detected anomaly, have much less evidence, being returned only
in nearly 50% of the perturbed instances. In the same way, areas
that were not part of the detected anomaly can be returned in a few
but significant number of instances. In a real scenario, this analysis
shows which areas are the most critical ones in the anomaly, where
the source of the disease problem may be located and rapid actions
are needed.

In Figure 5 we can see 𝑝𝑖 for each area varying with different
values of 𝜋 for our two proposed sampling methods. With the
original data (𝜋 = 1), we have no variation between the instances,
and the algorithms always detect the same anomaly. If we add a
small amount of noise, we can note a dramatic drop in the 𝑝𝑖 values
for some areas for the CSSS algorithm, indicating that it has less
confidence about such areas. Indeed, the majority of these areas
are not part of the true anomaly, represented as black lines on the
graph. On the other hand, if we set a very high value for 𝜋 , we note
that the confidence decreases for positive areas and increases for
negative areas as a result of too much noise. This type of graph can
help in choosing a value for the 𝜋 parameter. For example, in the
graphs in Figure 5, values around 𝜋 = 0.9 provide a good balance,
as they maintain high confidence in true anomaly areas while still
accounting for some noise, ensuring the algorithms’ robustness
across varying conditions.

Figure 4: The first column shows the method-detected spatial
anomaly using the original data. The 2nd and 3rd columns
show the percentage of simulations for each area on the map
and in a histogram based on bootstrap noise cross-validation
with 𝜋 = 0.9.

Figure 5: 𝑝𝑖 for each area shown in figure 4 varying with 𝜋 .
Red lines correspond to the areas of the true cluster, while
black lines correspond to the other areas on the map.

5.2 Selecting a SDAD algorithm
In this section, we show how our stability measures provide use-
ful information to guide the SDAD algorithm general choice. In
contrast with the previous section, we are not concerned with
one specific application but rather with general algorithm proper-
ties. We specify a distribution probability to generate 𝐾 synthetic
datasets with a known spatial anomaly. In this way, besides 𝑆id,
𝑆not-id and 𝑆 , we can also calculate the metrics 𝑆+, 𝑆− and 𝑆sign.

We know that areas with different underlying populations tend
to exhibit varying levels of evidence in the data [8]. For this reason,
we demonstrate our metrics on four anomalies, each composed
of areas with different population profiles. The spatial anomalies
were generated using the “Northeastern USA Benchmark Data,
Purely Spatial” dataset collection, available at http://www.satscan.
org/ [23]. It uses the geography and 1990 female population from
245 Northeastern U.S. counties. We created four spatial anomalies,
each composed of 5 areas. The relative risks are defined so that the
null hypothesis is rejected with probability 0.999 [26]. The format
and areas that make up each anomaly can be seen by the areas with
red borders in Figure 6. Each instance had a total of 600 disease
cases.

The spatial anomaly or cluster 𝐴 has a circular shape and its
central area has a small population size. As shown in [8], areas
with small population size have a high probability of receiving
zero cases, even under a higher relative risk. By using CSSS, this
central area will be forced into the detected circular cluster by the

http://www.satscan.org/
http://www.satscan.org/
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other high-risk and large population areas that form a ring around
it. A method such as CSSS that restricts the potential anomalies
to a circular shape tends to favor the inner-ring area. This is so
even when 𝑦𝑖 = 0 and therefore with no evidence of having a high
underlying risk. The spatial anomaly 𝐵 also has a circular shape
but with a sparsely populated area on its edge, projecting out of the
circular nucleus. A circular detection method tends to not identify
this area, pointing to a spatial anomaly with a smaller radius unless
the observed data presents strong evidence for high risk. This may
also affect a flexible shape method such as FleXScan. Anomalies 𝐶
and 𝐷 have areas with diverse population sizes and do not have a
circular shape. The smallest circle containing the spatial anomaly
𝐶 is composed of 7 areas and hence incorporates 2 other areas
with low disease incidence rates. The smallest circle containing the
anomaly 𝐷 is composed of 8 areas. Anomalies 𝐶 and 𝐷 should be
more easily identified by irregularly shaped methods, but they can
also be detected by the circular scan by means of a large circle.

For each spatial anomaly, we randomly generated 1000 instances
by simulating disease cases in each area. We obtained 𝑝𝑖 using
𝛼 = 0.05. Figure 6 shows on the first and second rows the 𝑝𝑖 values
for each area for CSSS and FleXScan, respectively, and the third
row shows the stability metrics for each algorithm. There were no
striking differences between the two methods. As expected, the
CSSS algorithm performed better in all stability metrics for the
cluster𝐴, identifying exactly the true circular anomaly in almost all
simulations. The FleXScan algorithm detected in fewer instances
the areas in𝐴with a small population and also identified more often
some areas that do not belong to 𝐴. CSSS algorithm also performed
better for the spatial anomaly 𝐵, assigning higher 𝑝𝑖 to 𝐵 areas,
although FleXSCan was better at not detecting areas outside the
anomaly. Note that both algorithms failed to detect the area with
a small population in 𝐵. In anomaly 𝐶 , FleXScan was more stable.
CSSS detected many times a larger circular region containing the
true spatial anomaly. The other areas were detected only in some
simulations, giving to this algorithm a higher 𝑆not-id value. FleXScan
found the same set of areas in almost all simulations with large
values for 𝑆 . However, it failed in detecting one area of𝐶 , leading to
lower 𝑆+. Due to the high occurrence of false positive areas detected
by CSSS, FlexScan ended anyway with a better 𝑆sign metric. For
the anomaly 𝐷 , CSSS and FleXScan had similar values for 𝑆 . While
CSSS detected consistently a larger spatial anomaly than the true
one, FleXScan was better in giving lower 𝑝𝑖 to areas not detected
often. However, by analyzing the true spatial anomaly, we can note
that FlexScan was better at finding systematically the true areas.
In short, without prior information, CSSS would be recommended
(because more stable) for spatial anomalies 𝐴 and 𝐵, FleXScan for
the anomaly 𝐶 , and both algorithms for anomaly 𝐷 .

5.3 Behavior of the metrics by varying 𝜋
We studied the stability for the detected and non-detected areas
by the CSSS and FleXScan methods in the proposed clusters using
the two noise addition procedures (bootstrap and rewiring). In
all scenarios, the FleXScan method proved to be more stable for
unidentified areas. That is, for areas not identified as part of the
cluster, the number of simulations in which they are detected tends
to be close to zero. As expected for cluster 𝐴, the CSSS method was

Figure 6: Percentage of simulations 𝑝𝑖 for each area obtained
by the CSSS (first row) and FlexScan (second row) algorithms
for the spatial anomalies (areas with red borders). The third
row shows the stability metrics of both algorithms.

more stable for the identified areas. This means that some areas
were incorporated into the cluster in almost all noisy simulations.
In fact, for cluster𝐴, the circular method consistently identified the
same cluster. For clusters 𝐵 and 𝐶 , the stability for the identified
areas was similar for the two detection methods, with the circular
method being slightly superior.

We also studied the combination of stability for the identified
areas and for the unidentified areas, which gives us the overall
stability of the methods. Their stability is similar to each other,
but there is a slight advantage for the circular method in cluster
𝐴 and a slightly better result for the flexible method in cluster 𝐶 .
Additionally, we studied the stability for the truly positive and truly
negative areas. Once again, we found that the FleXScan method
is better when compared with CSSS. The reason is that it does
not include truly negative areas in the detected cluster. The CSSS
method, in turn, is more consistent for clusters 𝐴 and 𝐵, correctly
detecting the truly positive areas throughout the noisy simulations.
For cluster 𝐶 , the FleXScan method correctly identifies the cluster
for low noise rates, but it is surpassed by the CSSS method as the
noise increases. In summary, the stability of correctness for the
circular method is superior for clusters 𝐴 and 𝐵. For cluster 𝐶 , the
performance of the FleXScan method is better.

In our simulations, the results of the binomial and rewiring
methods for adding noise were similar. Therefore, we do not favor
either method. A more detailed analysis of the metrics can be made
by examining the average proportion of times that each area was
identified as part of the cluster detected during the noise simulations.
By checking the distance from the average number of simulations
in each area to zero or to the total number of simulations, we obtain
evidence of the method’s stability.

6 CONCLUSION
In this study, we extended the concept of stability, traditionally
used to determine the optimal number of clusters in non-spatial
datasets, to spatial disease anomaly detection (SDAD) algorithms.
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We introduced innovative stability metrics and noise addition meth-
ods to assess and enhance the reliability of SDAD algorithms. Our
approach, including bootstrap and rewiring sampling methods, en-
sures that spatial patterns in the data are preserved, providing a
robust framework for evaluating SDAD performance.

Our results demonstrate that stability measures can significantly
aid in selecting appropriate SDAD algorithms. For example, the
CSSS algorithm showed better stability for spatial anomalies with
circular shapes, while FleXScan performed better for irregularly
shaped anomalies. This insight is crucial for practitioners to choose
the most suitable algorithm based on the anticipated spatial anom-
aly shape.

However, our study has limitations. The proposed stability met-
rics are highly dependent on the hyper-parameter 𝜋 , and selecting
an inappropriate value can lead to misleading stability assessments.
Future work could focus on developing adaptive methods for se-
lecting 𝜋 based on data characteristics.

Another limitation is our assumption that spatial patterns in dis-
ease data are consistent across different instances. In reality, exter-
nal factors such as changes in population behavior, environmental
conditions, or healthcare interventions can introduce variability
in spatial patterns. Incorporating models that account for such
influences could enhance the robustness of our stability measures.

Our evaluation relied on synthetic datasets, which, while allow-
ing for controlled experimentation, may not fully capture the com-
plexity of real-world disease data. Ground truth data for our task
are unavailable. Although the COVID-19 pandemic provided exten-
sive data, it does not offer suitable ground truth for our study due
to uneven case recording, dynamic virus prevalence, and the com-
plexities introduced by its infectious nature. COVID-19’s rapidly
changing patterns differ from the stable, slow-spreading diseases
our work focuses on, and the need to model stochastic dependence
due to interpersonal interactions complicates the use of standard
disease mapping models.

In our study, we aimed to develop a robust framework for de-
tecting spatial anomalies in disease risk, specifically under sparse
data conditions. While synthetic datasets lack explicit ground truth,
they allowed us to evaluate the feasibility and performance of our
methods within the constraints of our defined scope. However,
the importance of ground truth data cannot be overstated, and fu-
ture research should aim to validate our findings using extensive
real-world datasets to ensure the generalizability of our methods.

Another limitation is our focus on single spatial anomalies. Mul-
tiple overlapping or adjacent anomalies may occur in practice, com-
plicating detection and stability assessment. Extending our stability
metrics to handle multiple anomalies could provide a more com-
prehensive evaluation framework.

Lastly, while our stability metrics offer valuable insights into
SDAD algorithms’ reliability, they do not directly address the in-
terpretability of the detected anomalies. For public health officials,
understanding the underlying reasons for an anomaly is as impor-
tant as detecting it. Integrating interpretability measures into our
stability framework could make the results more actionable for
decision-makers.

Our stability approach provides valuable insights into the given
data and the spatial anomaly depicted in the map. It operates in-
dependently of the chosen SDAD method, the map topology, and

the data-generating distribution. Moreover, it does not rely on any
prior information or assumptions about the dataset. This work
advocates for cluster stability as an essential checkpoint in inter-
preting spatial disease anomalies and introduces a systematic and
standardized analytical framework for assessing spatial anomaly
detection results.
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