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ABSTRACT

The explosion of mobile devices, GPS technology, and IoT sensors
has generated an unprecedented volume of spatiotemporal data,
offering immense potential for insights into human behavior and
spatial patterns. In this paper, we introduce a novel self-organizing
tree algorithm designed to aggregate and organize human mobility
data for downstream tasks. Our approach addresses the scalability
issues faced by traditional Trajectory User Linking (TUL) tech-
niques, enabling efficient handling of large numbers of users and
dynamic addition of new users. This advancement paves the way
for more personalized and innovative applications across various
industries and. Our findings highlight the transformative potential
of self-organizing trees in spatiotemporal data analysis, setting a
new benchmark for future research.

CCS CONCEPTS

« Computing methodologies — Modeling methodologies;
Search with partial observations; Supervised learning by clas-
sification.
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1 INTRODUCTION

The proliferation of mobile devices, GPS technology, and Internet
of Things (IoT) sensors has led to an unprecedented volume of spa-
tiotemporal data being generated daily. At its core, spatiotemporal
data consists of ID, latitude, longitude, and timestamp but can be
enriched with additional features. Sequences of these points are
called trajectories. Spatiotemporal data offers insights into human
behavior, environmental changes, and spatial patterns, enabling
informed decision-making for organizations that leverage it. There
are myriad data sources that do not share a common globally unique
identifier. As a result, correlating devices within and across datasets
to their user unlocks greater possibilities for personalization.
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The procedure of mapping a trajectory to an ID is called Tra-
jectory User Linking (TUL). TUL was first formally addressed in
2017[7], although previous papers centered around similarity met-
rics for sequences indirectly touched on the topic. In this paper,
we explore an unsupervised approach to aggregating collections of
user trajectories to create representative patterns of life for individ-
ual users. We then use those representations to evaluate similarity
to new unlabeled trajectories in order to assign an ID.

2 RELATED WORK

The majority of previous work on TUL is centered around deep
learning approaches. Starting with the works of Gao et al.[7], the
authors used recurrent neural networks (RNN) to map the trajec-
tory to a latent space which is fed into a linear layer and softmax
to generate probabilities for each user in the trained dataset. Since
then, authors have added new ways of encoding the trajectory
before passing it to the RNN. Ferrero breaks up trajectories into
repeated sub-movements[6] that are then used as input features.
TULVAE[17] use pretrained point of interest embeddings as in-
put features and add variations to the deep learning architecture.
MARC[12] converts all available trajectory semantic attributes into
end-to-end learned embeddings including a geohash encoding for
spatial data to use as inputs for a RNN. All of these deep learn-
ing approaches have challenges with scaling to larger populations
- restricting performance to a few hundred users and requiring
retraining to introduce new users.

Najjar and Mede[13] took a simpler approach that was focused
on the heuristic that a small collection of locations is enough to
identify a user. With this concept, they demonstrated the ability to
predict for populations on the order of 100k. The paper, however,
uses an arbitrary location index as the primary feature - taking
the value of the three largest indices as the representative vector
to perform Euclidean distance calculations. The reported scores
in this paper are spectacular, but we believe the ordering of the
indices allowed for data leakage between the train and test sets
through a correlation between user ID and location index. While
reproducing the results, we found that decoupling the user ID
from the location index did not perform as well as cited in their
research. We appreciate the simplicity of the approach and use it
as inspiration while introducing a temporal component.

2.1 Trajectory-User Linking

In this section, we formally define TUL as demonstrated in previous
works[7, 13]. Given a population U containing users u € U, we
define a trajectory t,, for user u with r samples as

ty = {(u, tu 1, bu,l), (u, ty,2, bu,Z), oo (u, tuzs bu,T)}
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where (u, ty,;, by ;) is a tuple representing a record of user u checking-
in at time #, ; and location b, ; from an enumerated set of check-in
locations.

We define TUL as finding an onto (surjective) mapping T — U
where T is a set of unlabeled trajectories t belonging to users in the
population U.

3 METHOD

The field of bioinformatics has had a rich history of using unsu-
pervised techniques to cluster sequences. One such approach is
through a Self-Organizing Tree Algorithm (SOTA) [5, 8, 11]. The
authors all created variations of SOTA to create hierarchical repre-
sentations of sequences. SOTA works similarly to self-organizing
maps, but the number of nodes grows dynamically.

For each user u € U, create a binary tree 7y, containing a root
node with two children. SOTA algorithms alternate between periods
of learning and periods of growth. During learning periods, each
sequence is passed in and evaluated against nodes n € 7. The
best node and its neighbors are identified and updated to more
closely match the example sequence. During periods of growth, the
network adds children to nodes with high heterogeneity.

We will use a variation of SOTA to cluster similar days for a user
together to help overcome sparse data and create representative
days that capture the pattern of life of those users. To do this we
need to represent each day in the trajectory in a format that can
be efficiently compared to a representative day, a way to aggregate
the representation of similar days together, and a way to score
unlabeled trajectories against a tree. We address these items in the
following subsections.

3.1 Data Representation

While there are algorithms to score and accumulate different length
trajectories[3, 14, 15] such as dynamic time warping and longest
common subsequence, aggregation can be complex[1, 2] and compu-
tationally expensive. For this work, we chose to use a fixed sequence
length T for each day, d, within a trajectory t by binning temporally
into T time bins. For our experiment, we used 30-minute time bins,
setting T to 48 for a 24-hour period.

For the datasets we use in evaluation, there is a pre-identified
ID for each location, but any mapping from latitude and longitude
to an integer could be used, such as S2 or H3 indexing. For each
user u, we sort the locations visited by a user by visit frequency
and enumerate. Mapping any given geospatial bin by a function
fu:B—>Z*

fu(b) = min(rank, (b),L — 1)

where ranky, (b) returns the zero-indexed, without ties, rank of b
based on the frequency of user u visits. The most visited location
for a user is at the first index, and the second most is at the second
index, and so on. We restrict the number of enumerated bins to
L — 1 where any bin that would have an index greater than L — 1 is
instead labeled L — 1. This will represent a pool of locations that are
visited less frequently. We set L to 10 in our experiment, capturing
the 10 most frequent locations the user visits.

Once all locations are indexed according to the user, we perform
a one-hot encoding adding two extra indices. One extra index will
be used for when unlabeled data falls outside of the previously
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visited locations for the user and the last index is used for time bins
with missing data. We average the one-hot encoded vectors across
each time bin and create an array of dimension (7T, L + 2) for each
day with the L + 1 bin filled with a 1 for time bins missing data to
produce the sequence x. Once data is in this form, we are able to
train a SOTA for each user to use in evaluation.

3.2 Training

Each node n in the tree 7; carries with it a (T, L + 2) dimensional
array a, for all n € 7y that captures an aggregate representation of
a pattern of life for user u. Using an input training day for the user,

x4

, we score each leaf node in the tree using the mean squared error
between the node array and the input array, MSE(ay, x9). The leaf
with the lowest error is selected as the best match n* and is updated
by linearly interpolating between the node’s representation a,+
and the training example with a custom weight A. For our training,
we used a weight of 0.2 and iterated over all training examples 5
times before each period of growth. During tree growth, we create
two child nodes for any leaf node that was updated with more than
one training example. Each child is initialized with a copy of its
parent’s representation. For our experiment, we terminated after
training at a tree depth of 2, yielding at most 4 trained leaf nodes.

At the end of training, we compute the standard deviation o,
for each representation a, using the training examples that best
aligned with the leaf node. For each user u, we store a dictionary
lookup to map a location to the user-specific geospatial encoding
(fu) and we store the corresponding generated tree 7. We also
create a sparse array of the normalized visit frequency for each
geospatial bin visited by the user. We aggregate the visit frequency
across the trajectory.

3.3 Evaluation

We evaluate unlabeled trajectories using a multi-step process. First,
as with the train data, we create a sparse array of the normalized
geospatial bin visit frequency for each trajectory. We multiply this
sparse array with the sparse train array to compute a cosine simi-
larity between visited locations. We keep the top k highest cosine
similarity scores and accumulate by user. We sort the users by count,
then by cosine similarity - we refer to this as our Freq approach.
The result of this scoring works as a filter to select a subset of users
to score with the more computationally intensive tree.

For each user u identified in the subset, we use their precomputed
tree 7y, to score unlabeled test trajectories. We convert a given test
trajectory mathbft;es into a (T, L + 2, D) sized array Xyes; using
the user specific map (f;) from a bin to an index where D is the
number of distinct days covered by the trajectory. Any bin not in
the map is set to index L. For each day in the test trajectory, we
compute the score against each tree leaf representation a, for all
generated trees 7y, using the following for each tree:

D-1 d _
_ . Xiest ~— an
score(Xest) = minpeg, |norm| ———
€+ o0y

d=0
where € is a small positive constant, we used 0.0001, norm is the
Frobenius norm, and x?est is a slice of xeg; at day d. While we do
use the missing data index in generating these representations, we
observed better performance if we drop that index while scoring. We
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Table 1: Summary of Datasets

Dataset Check-Ins Users
Gowalla 6,442,892 107,092
Brightkite 4,747,281 51,406
Weeplaces 7,369,712 15,793

Foursquare 33,263,631 266,909

aggregate those scores across all days using mean squared error and
sort the users by the score with the lowest score representing users
that align better to the patterns of life observed in the unlabeled
trajectory.

4 EXPERIMENTS

In this section, we present the results of TUL for our proposed
approach for four open source datasets.

4.1 Datasets

We used four open source datasets commonly in benchmarking TUL
methodologies [7, 13]: Gowalla[10], Brightkite[4], Weeplaces[9],
and Foursquare[16]. Each dataset contains records of user check-ins,
defined as the arrival of a user u at location b at time ¢.

For each dataset, we group sequences of check-ins on a weekly
timescale to generate user trajectories t,. Similar to previous works
[13], we filter out any users with less than 5 weekly trajectories
and any trajectories composed of less than 10 check-ins.

4.2 Metrics

We evaluate the performance of our models using a sequential 80-20
Train-Test Split of user-trajectories for a 400-user subset of each
dataset.

For evaluation, we use commonly used TUL metrics: Accuracy at
k (ACC@k), Macro F1 score (Macro-F1), Macro precision (Macro-P),
and Macro recall (Macro-R).

ACC@k measures the accuracy of a set of predictions by its top
k predicted labels.

# of correct classifications @ k

ACC@k =
@ # of all observations

Macro-P and Macro-R are the mean precision and recall among

all classes U
TP,

1 u
Macro-P = — Z —_—
Ul 44 TPy + FPy

1 TP
MacroR =7 0, 5,4 P,
U aey HHu TNy

And Macro-F1 is the F1-Score computed using Macro-P and
Macro-R
2 * Macro-P * Macro-R

Macro-F1 =
Macro-P + Macro-R

4.3 Results

We compute metrics outlined in 4.2 for state-of-the-art methods[12,
13] against and our proposed SOTA methodology.

We observe in Table 2 that our approach outperforms alterna-
tive models across a majority of evaluation metrics. In particular,
we see a significant improvement for metrics that rely on the top
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predicted user. Our SOTA approach provides, on average, an 11% im-
provement in ACC@1 performance vs. our Freq classifications and
achieves the highest Macro-F1 and Macro-P score for all datasets.

We also note that the reported performance in Table 2 for [13] is
calculated after decoupling the mapping of venue and user IDs to
avoid data leakage. In testing, when we did not perform this coun-
termeasure, we observed performance metrics for their approach
similar to the levels they presented in their original paper.

Similar to previous works, we calculate the performance of TUL
at different scales of users in the dataset shown in Figure 1. We
observe logarithmic scaling in performance across the user counts
available in the data tested. The ability to perform TUL at large
scale is crucial for real-world applications where the volume of
data and number of users can be immense. With the exception of
[13], analyses have remained limited to a few hundred users and
have limited applicability as a result. Our scalability opens new
possibilities for large-scale personalized services, urban planning,
and targeted marketing, making our method a valuable tool for
industries relying on extensive spatiotemporal data.

Brightkite Foursguare

1.0 1.0

— ACC@1
0.9 4 ACC@S 0.9 4

—— Macro-F1
0.8 A —— Macro-Pracision 0.8

—— Macro-Recall
0.7 4 \ 0.7
0.6 1 0.6
0.5 T T 0.5 T T T

10? 10° 10° 10* 10°
Number of users Number of users
Gowalla Weeplaces
1.0 1.0
0.9 4 0.9 A
0.8 - 084 \
0.7 4 0.7 A
0.6 - 0.6
0.5 T — 0.5 . .
10? 10° 10* 10? 10° 10°

Number of users Number of users

Figure 1: Measured TUL performance using our self-
organizing tree algorithm at different numbers of users.

5 CONCLUSION

We introduced a novel approach to user trajectory data using a self-
organizing tree algorithm. Our method not only provides human-
interpretable intermediate results but also demonstrates superior
performance compared to state-of-the-art techniques in Trajectory
User Linking (TUL) when restricted to just latitude, longitude, and
timestamp data.

Our findings underscore the potential of self-organizing trees to
offer a scalable and efficient solution for TUL. This approach opens
up new avenues for personalized services and applications across
various industries such as urban planning, targeted marketing, and
land use.

Moreover, our work lays the groundwork for future research.
Potential extensions include incorporating additional data features
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Table 2: Evaluation metrics across four public datasets for state-of-the-art approaches and two of our new approaches. We use
weekly trajectories satisfying requirements outlined in section 4.1 and restrict the population to 400 randomly selected users
with only space and time features. Ours (Freq) represents predictions from the cosine similarity between visit locations while
Ours (Tree) represents results from ranking the top 10 results from Ours (Freq) using our self organizing tree approach.

Dataset Method ACC@1 ACC@5 Macro-F1 Macro-P  Macro-R
[12] 0.7463 0.8666 0.6717 0.6932 0.6956
Brightkite[4] [13] 0.2717 0.2795 0.2686 0.3505 0.2652
Ours (Freq) 0.6047 0.7473 0.5785 0.6826 0.5492
Ours (Tree)  0.7128 0.7478 0.7071 0.7891 0.6829
[12] 0.8371 0.9397 0.8050 0.8364 0.8166
Foursquare[16] [13] 0.1018 0.1049 0.1117 0.1994 0.0905
Ours (Freq) 0.8089 0.9350 0.7793 0.8328 0.7690
Ours (Tree) 0.8810 0.9366 0.8520 0.8835 0.8531
[12] 0.7269 0.8665 0.6935 0.7275 0.7082
Gowalla[10] [13] 0.0452 0.0467 0.0574 0.1147 0.0456
Ours (Freq) 0.7210 0.8922 0.6933 0.7704 0.6747
Ours (Tree) 0.8160 0.8914 0.7778 0.8113 0.7844
[12] 0.8074 0.9105 0.7829 0.8083 0.7892
Weeplaces[9] [13] 0.0658 0.0690 0.0952 0.1964 0.0780
Ours (Freq) 0.8347 0.9173 0.8174 0.8717 0.8050
Ours (Tree)  0.8715 0.9205 0.8461 0.8746 0.8471
to the node representation, such as points of interest, social interac- [4] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:

tions, and temporal patterns, to further enhance the accuracy and
applicability of the model. Exploring hybrid models that combine
the strengths of deep learning with self-organizing trees could also
yield promising results.

Our self-organizing tree algorithm represents a significant ad-
vancement in the field of spatiotemporal data analysis, providing a
robust and interpretable framework for trajectory user linking. We
believe this approach will inspire further innovations and applica-
tions, driving forward spatiotemporal data analytics.
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