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Abstract
Spatiotemporal data consisting of timestamps, GPS coordinates,
and IDs occurs in many settings. Modeling approaches for this type
of data must address challenges in terms of sensor noise, uneven
sampling rates, and non-persistent IDs. In this work, we character-
ize and forecast human mobility at scale with dynamic generalized
linear models (DGLMs). We represent mobility data as occupancy
counts of spatial cells over time and use DGLMs to model the occu-
pancy counts for each spatial cell in an area of interest. DGLMs are
flexible to varying numbers of occupancy counts across spatial cells,
are dynamic, and easily incorporate daily and weekly seasonality in
the aggregate-level behavior. Our overall approach is robust to var-
ious types of noise and scales linearly in the number of spatial cells,
time bins, and agents. Our results show that DGLMs provide accu-
rate occupancy count forecasts over a variety of spatial resolutions
and forecast horizons. We also present scaling results for spatiotem-
poral data consisting of hundreds of millions of observations. Our
approach is flexible to support several downstream applications,
including characterizing human mobility, forecasting occupancy
counts, and anomaly detection for aggregate-level behaviors.
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1 Introduction
Spatiotemporal data occurs in a variety of different settings such as
traffic management [25, 32], ecology [14], environmental monitor-
ing [1] and epidemic control [7]. There are several characteristics of
GPS trajectory spatiotemporal data that make accurate modeling of
this data challenging, including sensor noise and uneven sampling
rates of observations. Additionally, spatiotemporal data often ex-
hibits heterogeneous dependencies over space, time, and between
agents or entities in the trajectory data, and accurately capturing
these dependencies while modeling spatiotemporal data at scale is a
significant challenge. In this work, we propose an efficient, flexible,
and scalable approach to model and forecast spatiotemporal data at
scale using dynamic generalized linear models (DGLMs) [28, 29].

Our approach focuses on modeling human mobility data specifi-
cally and we are interested in modeling mobility data for hundreds
of thousands of agents for months of time over areas of thousands
of km2. Our setting requires models that accurately capture normal
human mobility to support a variety of downstream applications,
including forecasting and anomaly detection. We require model-
ing approaches that are efficient, probabilistic, robust to various
types of noise, and can incorporate important dependencies exhib-
ited in the data, such as daily seasonality in human mobility. We
choose DGLMs in this setting due to their ability to meet these
requirements.

1.1 Related Work
Accurate models for human mobility data support many down-
stream applications, including traffic flow forecasting [2, 22, 25], ur-
ban planning [21], point of interest demand analysis [17], epidemic
modeling [21], and anomaly detection. Related work in mobility
modeling can largely be separated into modeling fine-grained agent
movement or larger scale, population-level movement [2] and can
also be separated by which modes of transportation are modeled,
e.g. pedestrian movement, vehicular movement, etc. [21].

There are a variety of approaches to modeling spatiotemporal
data generally and human mobility data specifically, ranging from
traditional point process models to more recent deep learning ap-
proaches. Mechanistic models, such as the gravity model, model
mobility flow between locations as inversely related to the dis-
tance between those locations [33]. Bayesian latent factor models
were used to model demand patterns based on points of interest
in [17]. Gaussian processes are commonly used statistical models
for spatiotemporal data; recent extensions include capturing social-
network dependencies between agents in animal movement data
[20] and combining Gaussian processes with deep learning to pre-
dict origin-destination flows in taxi data [23]. Finally, deep learning
approaches are becoming more popular for spatiotemporal data,
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for example, to model and predict city-wide traffic patterns with
LSTMs [22].

Dynamic generalized linear models are Bayesian state spacemod-
els that are flexible to various observation distributions [28, 29].
They have been successfully applied in a variety of settings involv-
ing large-scale data, including retail forecasting [3, 30] and online
advertising for modeling traffic flows through a website [5]. Criti-
cally, in our setting observations are preprocessed into occupancy
counts in space-time bins and DGLMs can flexibly model count
time series data with a variety of sparsity and over-dispersion levels
[3]. Related work using state space models for spatiotemporal data
includes traffic flow prediction and modeling with Kalman filters
[10, 18], though only for settings that admit normally distributed
observations, modeling rainfall data and water temperature [24]
and modeling tornado reports and mortality ratios [11].

In this work, we focus on aggregate-level modeling of human
mobility over long and short time horizons and our approach is
applied to data with walking and driving movement patterns. While
our results focus on multi-step ahead forecasting of occupancy
counts, we propose a modeling approach that is flexible to a variety
of downstream applications. To this end, we require models that
are probabilistic to accurately quantify uncertainty, can be used
for multi-step ahead forecasting, are able to flexibly incorporate
external information (e.g. point of interest data, holiday effects,
seasonality, etc.), and can accurately model count time series. We
need to meet these modeling goals with an approach that can scale
to large amounts of data for city-wide human mobility modeling.

Our approach meets all of these modeling requirements by pre-
processing human mobility data into occupancy counts in space-
time bins and then modeling and forecasting these counts with
DGLMs. DGLMs additionally have very competitive forecast accu-
racy compared to competing modeling approaches [3]. Other re-
lated work does not meet all of these criteria; mechanistic and deep
learning approaches often do not represent uncertainty and can be
challenging to scale. Statistical models like Gaussian processes and
extensions with complex dependencies can also be challenging to
scale. Previous state space modeling approaches have in general
been applied at a smaller scale than in this work, or to different
spatiotemporal data that is not human mobility data. To the best
of our knowledge, our application of DGLMs, and specifically the
sparse count mixture variations [3, 30], to large scale mobility data
modeling and forecasting is novel.

1.2 Contributions
In this work, we present a flexible and scalable approach tomodeling
human mobility data with dynamic generalized linear models. We
use a preprocessing approach to convert raw spatiotemporal data
to occupancy counts in space-time bins. Occupancy counts for each
spatial bin are modeled with DGLMs and we present forecasting
results for several spatial resolutions and forecast horizons; our
forecast point accuracy does not degrade between fifteen-minute
(1-step ahead) forecasts up to twenty-four hour (96-step ahead)
forecast horizons. Across a variety of different levels and patterns
of observed occupancy counts, we are able to accurately model
and forecast with this common modeling approach. Finally, we
present details on the scaling and implementation of our approach,

which is linear in the number of observations, spatial cells, and
time bins. While our results focus on human mobility data, this
work is applicable to other application areas for spatiotemporal data
where accurate probabilistic modeling at scale is the main interest.
Our approach supports fully online preprocessing, updating, and
forecasting, and anomaly detection for aggregate behaviors.

2 Data and Application Goals
In this work, we focus on modeling trajectory data, where each
observation consists of an agent ID, latitude, longitude, and times-
tamp. Observations can be unevenly sampled in time and space,
as there is often sensor noise in the latitude/longitude values and
IDs for agents may not be persistent. Additionally, human mobility
data tends to be largely stationary, with movement occurring be-
tween stationary locations. Aggregate occupancy counts exhibit a
large range of values, from very sparsely occupied cells to densely
populated locations. Our modeling approach needs to address these
challenges. Our goal for this work is to flexibly model large-scale hu-
man mobility data to support a variety of downstream applications,
such as forecasting traffic flow and performing aggregate-level
anomaly detection.

The results presented in this work use simulated trajectory data,
following the generative process described in [27]. Specifically, the
generative data model is parameterized by sequences of persistent
locations that are associated with each agent in the synthetic data.
The data generating process assumes that agents often: (1) have
recurring behaviors in the same locations (e.g. home and work
locations), (2) live and behave similarly to other agents, and (3)
travel along roads between their persistent locations [27].

Persistent locations are randomly assigned to each agent using
foundation data from [6, 19, 26], and the assignment of persistent
locations encourages similarity among groups of agents (e.g. agents
share the same office location or have nearby houses). Agents travel
on roads between persistent locations; the synthetic data uses an
Open Street Maps (OSM) road network from the OSMnx Python
package [4], which results in a high frequency human mobility
dataset. For our experiments below, we start with this simulated
trajectory data sampled every 60 seconds for 10909 agents over a
28-day period (Figure 1). We do not assume specific knowledge of
this data generating procedure in our results below.

3 Spatiotemporal Modeling with DGLMs
3.1 Data Preprocessing
To meet our goal of flexibly modeling human mobility data at scale,
we first preprocess the raw trajectory data (ID, latitude, longitude,
timestamp observations) into occupancy counts of unique agents in
space-time bins. This discretization of space and time and reduction
from individual agent-level trajectories to aggregate occupancy
counts significantly reduces the volume of data and enables paral-
lelization across relevant dimensions in the modeling. Additionally,
converting the data to occupancy counts in discretized space-time
bins provides robustness to sensor noise, uneven sampling rates of
the data over time, and ID dropout or confusion. While discretizing
the data over space and time and then aggregating into occupancy
counts loses information at the individual observation level, this
approach supports our goal of flexibly modeling at scale.
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Figure 1: Synthetic human mobility data for 10909 agents
over a 28-day time period. Brighter colors indicate a higher
density of observations. The area of interest is large, resulting
in both dense and sparse areas to model.

Figure 2: Simulated sensor noise from our synthetic human
mobility data. We encode our mobility data into space-time
bins to be robust to sensor noise.

Our preprocessing approach is outlined in Figure 3. First, we
encode all latitude, longitude values into a spatial bin. In this work,
we use S2 cells [9] to discretize space, though our approach is
flexible to any choice of geohashing algorithm, including geohash
[15] or H3 cells [8]. Next, we convert the raw timestamp values
into temporal bins based on a chosen temporal resolution. This
encoding of space and time can occur in parallel across observations
and does not depend on the choice of spatial or temporal resolution
(unless the geohashing algorithm takes longer to encode for finer
resolutions). Finally, to form the occupancy counts, we count the
number of unique agents in each space-time bin. We allow each
agent to be in multiple spatial bins within the same time bin, though
this assumption is not required; the first, last, mean, etc. location
for each time bin could be selected instead. This procedure converts
the raw trajectory observations into aggregate occupancy counts

over spatial and temporal bins for the entire dataset of interest in a
scalable manner.

In this work, we consider three different spatial resolutions to
demonstrate the flexibility of our approach; summary statistics for
these spatial resolutions are given in Table 1. The temporal resolu-
tion for our results is 15-minute time bins, for a total of 2688 time
bins over 28 days of synthetic data. Finer spatial and/or temporal
resolutions decrease the loss of spatial information from discretizing
the data, but increase the sparsity in the resulting occupancy counts
and increase the sensitivity to noise. The degree of sparsity for each
spatial cell increases at finer spatial resolutions (Figure 4), which
also impacts the modeling. In Table 1, at finer spatial resolutions,
more spatial cells require mixture models (DCMMs or DLMMs,
described below) to model the observed occupancy counts.

3.2 Dynamic Generalized Linear Models
After converting the spatiotemporal data to occupancy counts in
space-time bins, we model the resulting data with dynamic gener-
alized linear models (DGLMs) [28, 29]. DGLMs are Bayesian state
space models that can easily incorporate seasonality, covariates,
and holiday effects. DGLMs have straightforward probabilistic fore-
cast distributions, and are flexible to a variety of occupancy count
distributions, from very high-levels of counts in each spatial cell,
to very sparse cells. In this work, we fit one DGLM to each spatial
cell in our area of interest.

Let 𝑦𝑡 be the observed occupancy count at time bin 𝑡 for one
spatial cell. We assume that 𝑦𝑡 comes from an exponential family
distribution and define a DGLM to model this sequence of occu-
pancy counts as follows [28]:

𝑦𝑡 ∼ 𝐸𝑥𝑝𝐹𝑎𝑚𝑖𝑙𝑦 ([𝑡 )
_𝑡 = F′𝑡𝜽𝑡 = 𝑔𝑙𝑖𝑛𝑘 ([𝑡 )
𝜽𝑡 = G𝑡𝜽𝑡−1 + 𝝎𝒕 ,

𝝎𝑡 ∼ (0,𝑾𝑡 ),

(1)

where𝑔𝑙𝑖𝑛𝑘 (·) is the link function for the chosen exponential family
form, [𝑡 is the natural parameter, 𝜽𝑡 is the state vector, 𝑭𝑡 is a
vector of known dynamic covariates, 𝑮𝑡 is a known state matrix,
𝝎𝑡 is the evolution noise, and E(𝝎𝑡 ) = 0,V(𝝎𝑡 ) = 𝑾𝑡 . Dynamic
covariates, such as point of interest information, holiday effects,
etc. are incorporated into the 𝑭𝑡 vector, and seasonality is also
incorporated via 𝑭𝑡 and 𝑮𝑡 . See Section A.2 and [28] for more
details about model inference.

The𝑾𝑡 matrices represent the evolution variance and are spec-
ified in terms of component discounting [28]. 𝑾𝑡 is partitioned
into components for the trend, seasonal terms, and covariates, and
each component includes a specific discount factor. Discount factors
specify the level of change in the stochastic state evolution and how
quickly the DGLM state vectors adapt to new information; discount
factors close to 1 indicate very little stochastic noise in the state
evolution, while discount factors closer to 0 indicate large variation
in the respective state vector, allowing the DGLMs to adapt very
rapidly to incoming information and “discount” the value of older
observations [28]. In practice, discount factors are rarely set lower
than about 0.9. Discount factors are the main hyper-parameters to
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Figure 3: Preprocessing procedure to convert raw mobility data into occupancy counts in space-time bins. The encoding occurs
in parallel across all observations, making this approach highly scalable.

Figure 4: Sparsity (or percent of zero occupancy counts per spatial cell) for three different spatial resolutions. At fine spatial
resolutions (e.g. S2 cell level 17), the majority of spatial cells have zero occupancy for more than 50% of the 15-min time bins
over the month of our synthetic data.

tune for DGLMs and can be manually selected based on domain
knowledge or tuned with a grid search.

In this work, we automatically choose the specific DGLM form
based on the observed level of occupancy counts in the initial train-
ing data. Due to the choice of conjugate priors for the parameters
in the DGLM, these models have closed-form forecast distribu-
tions, which makes forecasting efficient [28]. Spatial cells with high
levels of occupancy counts (defined as a mean occupancy count
over the training period of > 50) are fit with a normal dynamic
linear model (DLM), where the occupancy counts are assumed to
follow a normal distribution and the forecasts are t-distributed. For
spatial cells with a mean occupancy count over the training data
of < 50, we fit a Poisson DGLM; forecasts are Negative Binomial
distributed. We also use mixture model extensions to DGLMs to
model and forecast the sparse occupancy counts that we observe in
a variety of spatial cells. Dynamic count mixture models (DCMMs)
[3] are a mixture of a Bernoulli DGLM (to model and predict zero
counts) and a Poisson DGLM (to model and predict the non-zero
counts) and can model a variety of different observed sparsity levels.
DCMMs also include a random effects extension for over-dispersed
count data. The forecast distribution for the DCMM is the product
of Beta-Bernoulli distributed forecasts from the Bernoulli DGLM

and Negative Binomial forecasts from the Poisson DGLM. We fit
DCMMs to spatial cells that have a mean < 50 and an observed
percent of zero occupancy counts that is greater than 15%; as seen
in Table 1, we fit DCMMs to many spatial cells across all spatial
resolutions, but especially for finer resolutions. Additionally, for
spatial cells that exhibit high average occupancy count levels, but
still have a degree of sparsity > 15%, we use dynamic linear mixture
models (DLMMs) [30], which are a mixture of a Bernoulli DGLM
and a normal DLM; forecast distributions are a mixture of samples
from the Beta-Bernoulli and the t-distribution.

We include a trend term (local level or dynamic intercept) and
daily seasonality in the DGLMs for all spatial cells. We also need
to specify trend and seasonality discount factors for all DGLMs,
random effect discount factors for the DCMMs and Poisson DGLMs,
and a discount factor on the stochastic variance of the DLM and
DLMM observations. Based on offline tuning experiments, we set
the seasonality discount factor to 0.994 and the random effect dis-
count factor or the stochastic variance discount factor to 0.9 for all
spatial cells. We tune the trend discount factor using a grid search
over the possible values of [0.96, 0.97, 1.0] for each spatial cell indi-
vidually and select the value that minimizes the mean absolute error
of the forecast median over the first 3 days of data (results below are
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presented for the following 25 days of simulated data). Additional
tuning of all discount factors via a grid search is straightforward,
though does add to the computation time.

DGLM updates are linear in the number of timesteps and do
not require expensive Markov-chain Monte Carlo or sequential
Monte Carlo, which makes these models efficient for inference and
forecasting at scale in our application. Additionally, this updating
occurs in an online, sequential manner, enabling our approach to
support streaming data settings. Updating and forecasting only
require the parameter values from the previous timestep, making
the DGLMs efficient in terms of memory, as well. We fit one model
per spatial cell and these models are updated in parallel across
space.

3.3 Forecast Metrics
We evaluate how well our modeling approach fits the observed
occupancy counts in terms of both point and uncertainty forecast
metrics. We evaluate the accuracy of our point forecasts using
root-mean squared error (RMSE), mean absolute error (MAE), and
zero-adjusted percent error (ZAPE); ZAPE explicitly evaluates how
well our models predict zero vs. non-zero occupancy counts. The
specific form of ZAPE used here follows [30] and the loss function
is defined for a non-negative count 𝑦 and forecast 𝑓 as:

L𝑍𝐴𝑃𝐸 = 1(𝑦 = 0) 𝑓

(1 + 𝑓 ) + 1(𝑦 > 0) |𝑦 − 𝑓 |
𝑦

, (2)

where 1(·) is the indicator function. The RMSE and MAE metrics
are on the same scale as the data (occupancy counts) and ZAPE is
a percent error metric. Point forecast metrics below are calculated
using the forecast median. We also use coverage to evaluate the
calibration of our forecast distributions; for well-calibrated uncer-
tainty estimates, we expect our empirical coverage to be close to
the theoretical coverage value.

3.4 Scaling Summary
Our preprocessing approach to convert the raw trajectory data
observations to occupancy counts is linear in the number of ob-
servations (or linear in the number of agents if each agent has
approximately the same number of observations). Modeling and
forecasting with DGLMs is linear in the number of time bins, with
1 DGLM fit to each spatial cell. In summary, our overall approach
is linear in the number of observations, time bins, and spatial bins.

3.5 Extensions
There are several straightforward extensions to our approach that
would only require updates to the preprocessing procedure, but
not to the overall modeling approach. While we focus on modeling
occupancy counts in this work, extending to the common setting
of modeling transitions between spatial cells, or origin-destination
matrices [2], is trivial. Instead of counting the number of agents
in each space-time bin in our preprocessing procedure, we would
calculate transitions, or flow counts, of the number of agents that
transition from spatial cell 𝑖 to spatial cell 𝑗 at time 𝑡 and would
fit a DGLM for every observed transition between spatial cells
(including self-transitions). This would greatly increase the number
of DGLMs to fit, which is why we did not consider this setting here,

but otherwise would require no updates to our modeling approach.
We would expect similar modeling results to those shown below,
with the observations of occupancy counts simply being updated
to flow counts. In addition to increasing the number of DGLMs,
modeling transitions instead of occupancy counts would increase
the level of sparsity in each observed transition; however, DCMMs
could still be applied to capture varying levels of sparsity in these
transition counts.

An advantage of DGLMs for modeling human mobility data
is the ease of incorporating external, dynamic, information into
the DGLMs directly. Here, we only use a trend term and daily
seasonality for our synthetic data results, though we could easily
incorporate holiday effects, point of interest information, etc. into
the models. We also only tune the DGLM discount factor hyper-
parameters over a limited grid to speed-up computation, but could
increase the degree of hyper-parameter tuning to further improve
upon forecast accuracy results presented below.

Finally, our approach requires a choice of temporal and spatial
resolutions. There is a trade-off between finer resolutions and the
degree of sparsity for each spatial cell that is modeled (Figure 4);
while DCMMs can accurately model and forecast count time series
with a variety of levels of sparsity, the more sparse the time series
becomes, the more challenging it is to accurately predict where the
non-zero observations will occur [30]. To address this challenge,
we could model over multiple spatial resolutions, so that the spatial
cells were not uniform in area but were variably sized based on a
base level of occupancy counts; this would only require changes to
our preprocessing, but not our modeling approach. Alternatively,
we could form multi-scale DGLMs over multiple spatial and/or tem-
poral resolutions [3, 11, 30] to share information at more aggregate
resolutions with the finer-grained resolutions; this information
could be added as an additional covariate in our DGLMs with no
further updates to the modeling approach. Similarly, we could in-
corporate spatial dependence between cells by using the forecasted
occupancy count of one cell as a covariate in the DGLM for another
spatial cell.

3.6 Anomaly Detection
The focus of this work is on accurate probabilistic modeling and
forecasting of occupancy counts, however our approach supports
several additional downstream applications, including anomaly
detection. The specific manner in which to use the DGLMs for
anomaly detection depends on the types of anomalies that need to
be detected; modeling occupancy counts with DGLMs as presented
here supports anomaly detection over aggregate changes in agent
behavior, which is reflected in higher or lower occupancy counts
than expected in a spatial cell. For example, in a transportation traf-
fic monitoring application, higher occupancy counts than expected
could represent a traffic jam, while lower counts than expected
could represent a road closure. Anomalous occupancy counts can
be detected by comparing the quantile or likelihood of the observed
occupancy count at time 𝑡 under the one-step ahead forecast dis-
tribution to the “expected” count at time 𝑡 . This “expected” value
could be a multi-step ahead forecast from further back in time or
from another DGLM that does not adapt as quickly to current data.
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Table 1: Spatial resolution andmodeling details for different S2 cell levels; S2 cell information from [9]. Finer spatial resolutions
exhibit more sparsity, requiring the majority of spatial cells to be DCMMs or DLMMs, as compared with the coarser cells.

S2 Cell Resolution Avg. Cell Avg. Cell # Spatial Cells / # DLMs # DLMMs # Poisson DGLMs # DCMMs
Area Edge Length # Models

10 81.07 km2 8.8 km 103 9 30 0 64
14 0.32 km2 550 m 3938 7 41 1 3889
17 4948 m2 70 m 42038 0 35 1 42002

DGLMs are probabilisitic models, which allows for uncertainty
estimates to propagate into the anomaly detection, too.

4 Results
4.1 Forecast Metrics and Examples
Across a variety of spatial resolutions and forecast metrics, DGLMs
accurately model the observed occupancy counts and the uncer-
tainty estimates of the forecast distributions are well-calibrated
(Table 2). The RMSE and MAE forecast metrics are on the same
scale as the data; on average, the 1-step ahead forecasts across
spatial cells are only a handful of occupancy counts off from the
observations, and the average percent error is also low for the
finer resolution spatial cells. The coverage of the DGLMs at 90%
tends to be > 90%, indicating that the uncertainty estimates are
slightly wider than they need to be; in practice, over-coverage is of-
ten preferred to under-coverage. Additional tuning of the discount
factors, specifically the discount factor for the random effects in the
Poisson DGLM and DCMM [3], could improve the calibration of
the uncertainty estimates. However, with a single modeling frame-
work, we are able to model a variety of different occupancy counts,
demonstrating the flexibility of our approach.

The magnitude of the observed occupancy counts does impact
the forecast accuracy of the models (Figure 5); the DLMs are used to
model spatial cells with higher occupancy counts and the forecast
medians have more potential to differ from the observed occupancy
counts. On the other hand, the DCMMs are used for lower count
spatial cells, leading to lower forecast metric values. The finer the
spatial resolution, the lower the occupancy counts for each spatial
cell overall, which is why the point forecast metrics in Table 2
improve with finer spatial resolutions. However, at finer spatial
resolutions, sparsity also increases. When the degree of sparsity for
each spatial cell is particularly high, e.g. > 70% of counts for a single
spatial cell are zero, it is challenging to predict when the non-zero
occupancy counts will occur. Modeling could be improved in these
settings with additional covariates; for example, point-of-interest
information could aid in predicting a zero vs. non-zero count for
these sparse cells. The level of noise in the data is also a considera-
tion; as the spatial resolution becomes finer, it is more likely that
sensor noise will cause occupancy counts to be split across spatial
cell boundaries. This can be addressed in several ways; for example,
smoothing the raw trajectory data, only encoding one observation
per agent per time bin, or considering multi-scale approaches over
multiple spatial resolutions [11]. In practice, the specific application
goals will guide the choice of spatial and temporal resolutions for
modeling the occupancy counts.

Figure 5: Mean absolute error (across spatial cells) by model
type for S2 cell level 14. DLMs are used to model higher
occupancy count cells and can have larger forecast errors
than the DCMMs, used for low and sparse occupancy count
cells.

DGLMs accurately model and forecast a variety of levels of oc-
cupancy counts, including high counts fit with a DLM, moderate
counts with sparsity fit with a DLMM and sparse, lower levels
of counts fit with a DCMM (Figure 6). Across these example spa-
tial cells, the forecast means closely track the observed occupancy
counts and the 90% credible intervals are well calibrated, as seen
across all spatial cells in Table 2. The flexibility of the DCMMs
and DLMMs, in particular, to model spatial cells with a high-level
of sparsity (or 0 occupancy counts), is critical, as across spatial
resolutions, we observe many spatial cells with some degree of
sparsity, varying from minimal sparsity to more than 80% sparsity
(Figure 4). In our synthetic data, this sparsity occurs as a result
of zero counts in a given spatial cell, but the DGLMs also easily
handle missing data by not updating for timesteps that have no
observations. The majority of spatial cells in our synthetic data ex-
hibit strong daily seasonality, which is explicitly incorporated into
each of the DGLMs and could be expanded to include seasonality
at additional resolutions, like weekly or monthly.

Spatial cells with high levels of counts and high levels of sparsity
are in general challenging to model; these cells contribute to the
larger forecast errors for S2 level 10 spatial cells in Table 2. An
example spatial cell is shown in Figure 7. This spatial cell exhibits
relatively high, non-zero counts (82.2 on average) and a large de-
gree of sparsity; 19% of time steps have zero occupancy counts. A
DLMM is automatically selected to model this spatial cell, and the
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Table 2: Forecast accuracy metrics across spatial cells for 1-step ahead forecasts. Mean and standard deviation across all cells is
shown for the forecast median. RMSE: root-mean squared error, MAE: mean absolute error, ZAPE: zero-adjusted percent error.
Lower is better for RMSE, MAE, and ZAPE and closer to the nominal coverage (e.g. 80%, 90% or 95%) indicates better calibrated
coverage.

S2 Cell Resolution RMSE MAE ZAPE 80% Coverage 90% Coverage 95% Coverage # of Models

10 65.62 ± 87.24 36.17 ± 57.73 63.53 ± 137.85 92.40 ± 4.48 94.87 ± 3.35 96.04 ± 2.98 103
14 9.18 ± 14.68 3.81 ± 7.15 22.87 ± 40.51 94.37 ± 5.99 95.87 ± 4.62 96.62 ± 4.16 3938
17 1.10 ± 2.15 0.37 ± 1.03 8.49 ± 8.99 97.32 ± 2.46 98.38 ± 1.72 98.97 ± 1.35 42038

Figure 6: One-step ahead forecastmean and credible intervals
for a DCMM fit to a spatial cell with low, sparse occupancy
counts at S2 cell level 14.

model has relatively high forecast error. This cell is challenging
to model because of the sparsity and because the non-zero counts
are not normally distributed. Alternatively, we could use a Poisson
DGLM to model this spatial cell (Figure 8); while this improves
the MAE and ZAPE metrics, coverage is significantly worse. Even
allowing for over-dispersion, the Poisson distribution has only one
parameter for the mean and variance. In these high count settings,
the Poisson DGLM significantly under-estimates the uncertainty
in the occupancy counts. Alternatively, we can tune the trend and
stochastic variance discount factors over a larger grid of values
to improve the forecast accuracy (Figure 9). The optimal discount
factors are much lower than the values selected in Figure 7; 0.9 for
the discount factor for the trend and 0.6 for the stochastic variance
in Figure 9 compared to 0.96 for the discount factor for the trend
and 0.9 for the stochastic variance in Figure 7. Lower values for the
stochastic variance increase how much over-dispersion is expected
in the counts, leading to the improved uncertainty estimates. Addi-
tionally, the lower discount factor for the trend allows the model
to adapt more quickly to the incoming data, leading to a slight
improvement in the forecast accuracy. Finally, the forecast accu-
racy for these cells could likely be further improved by additional
preprocessing to make the normal distribution assumption for the
non-zero counts more valid, or considering different distributions
than a mixture of a Bernoulli DGLM and a normal DLM via the
DLMM. However, our results here demonstrate the flexibility and
feasibility of our approach to a variety of choices of spatial and
temporal resolutions, and across different DGLM model types.

4.2 Multi-Step Ahead Forecasting
Multi-step ahead forecasting is also straightforward with DGLMs,
and the DGLM point forecasts remain accurate across longer-range
forecast horizons (Table 3). Our temporal resolution is 15 minutes
for the mobility data, and we compare results for 1 timestep ahead
to forecast results for 1 hour (4 steps ahead), 6 hours (24 steps ahead)
and 24 hours (96 steps ahead). Forecast accuracy across metrics
is comparable at all of these forecast horizons, demonstrating the
ability of DGLMs to be used for long-range forecasting for human
mobility. Results below are for marginal, rather than path, forecasts
[3, 28]. The coverage is lower at multi-step ahead forecast horizons
because we do not propagate the state vector uncertainty (via the
discount factors) at longer than 1-step ahead forecast horizons in
these results, though that additional uncertainty could easily be
incorporated to the multi-step ahead forecasts. We could alterna-
tively use path forecasts to improve the uncertainty estimates, at the
expense of longer computation times than the marginal forecasts
shown here. The long-range forecast accuracy benefits from incor-
porating the strong daily seasonality explicitly into the DGLMs,
which is very straightforward to do with these models. Other rel-
evant external information could also be easily incorporated to
further improve forecast accuracy as needed.

Figure 10 show twenty-four hour ahead forecast results (96-
steps ahead) for a DLMM fit to a relatively sparsely occupied spatial
cell at S2 level 14. The forecasts at this long forecast-horizon are
accurate, do not degrade much from the 1-step ahead forecasts,
and still have well calibrated forecast uncertainty. These results
demonstrate the flexibility of the mixture models (DLMMs and
DCMMs), in particular, to accurately model very sparse occupancy
counts and the ability of DGLMs to accurately forecast over long
time horizons; important qualities when using these models for a
variety of downstream applications.

4.3 Robustness
The synthetic data used in the experiments above has very regular
seasonality in the occupancy counts. However, our approach is
flexible to both different types of seasonality and less regularity in
the seasonality. To demonstrate this feature of the DGLMs, we also
include robustness results that focus on adding noise to the period
of the daily seasonality in the occupancy counts. For each spatial
cell at S2 level 14, we randomly sample a slight offset independently
for each day to shift the seasonal pattern slightly forward or slightly
backward in time (we also include no shift as an option to randomly
select). This additional noise in the data is meant to represent real
world data, where there may be regular seasonality, but the period
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Figure 7: One-step ahead forecast mean and credible intervals for a S2 level 10 cell modeled with a DLMM. This cell is challenging
to model, due to the high number of zero counts and the high values of non-zero occupancy counts. For the base DLMM, where
the only discount factor tuned is the trend term over a grid search of [0.96, 0.97], the RMSE for the 1-step ahead forecast mean is
109.75, the MAE is 70.91, the ZAPE is 984.40, and the 90% empirical coverage is 95.31%.

Figure 8: One-step ahead forecast mean and credible intervals for the same S2 level 10 cell in Figure 7, this time modeled with a
Poisson DGLM. The trend discount factor is tuned over [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 1] and the random effect discount
factor over [0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 1]. While the point forecast metrics improve slightly with this Poisson DGLM, the
uncertainty estimates are much worse. The RMSE for the 1-step ahead forecast mean is 117.93, the MAE is 62.12, the ZAPE is
221.91, and the 90% empirical coverage is 50.0%.

Table 3: Forecast accuracy metrics across S2 level 14 spatial cells for multi-step ahead forecasts. Table format as in Table 2.

Forecast Steps Ahead Time Ahead RMSE MAE ZAPE 80% Coverage 90% Coverage 95% Coverage

1 15 min 9.18 ± 14.68 3.81 ± 7.15 22.87 ± 40.51 94.37 ± 5.99 95.87 ± 4.62 96.62 ± 4.16
4 1 hour 11.20 ± 18.45 4.76 ± 8.88 23.02 ± 38.74 73.22 ± 4.37 74.39 ± 3.58 75.04 ± 3.21
24 6 hours 9.06 ± 15.00 3.68 ± 7.35 20.79 ± 38.44 73.26 ± 3.51 74.17 ± 2.98 74.72 ± 2.67
96 24 hours 9.35 ± 14.87 3.91 ± 7.31 23.27 ± 38.71 69.46 ± 4.56 70.91 ± 3.40 71.49 ± 3.08

of the seasonality is not as regular as the synthetic data we work
with here; each day the occupancy count peak might shift sooner
or later in the day, and this pattern is random.

We add this random noise in all spatial cells at S2 level 14 for
each day of data, over four possible levels of offset: up to 0.5 hours,
up to 1 hour, up to 2 hours, and up to 3 hours sooner or later than
expected. For all settings, no offset is also a possible noise setting.
We then fit the DGLMs as described above to all spatial cells and
compare to a baseline model that just uses the occupancy count 𝑡 -

24 hours ago to predict the occupancy count at time 𝑡 . The DGLMs
still have daily seasonality in the model and we do not change any
experimental settings except to retune the trend discount factor for
the noisy data. Except for retuning and fitting, the modeling setup
is identical to the results above without seasonal noise.

In addition to providing uncertainty estimates, the DGLMs are
able to flexibly adapt to noise in the seasonal pattern, across dif-
ferent levels of noise offset, while the simple baseline models are
not. Forecast metrics for these experiments are shown in Table 4
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Figure 9: One-step ahead forecast mean and credible intervals for the same S2 level 10 cell in Figure 7 for a tuned DLMM. The
trend discount factor is tuned over [0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.999, 1] and the stochastic variance discount factor over
[0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99, 1]. The uncertainty estimates are slightly better in this case, compared to the coverage in Figure 7
and the point forecast metrics are similar. The RMSE for the 1-step ahead forecast mean is 114.42, the MAE is 77.77, the ZAPE
is 956.41, and the 90% empirical coverage is 93.0%

Figure 10: Twenty four-hour ahead (96-step ahead) forecast
mean and credible intervals, compared to the 1-step ahead
forecast mean, for a DLMM fit to a spatial cell at S2 level 14.

and example forecasts are shown in Figure 11 and Figure 12. DGLM
forecast accuracy remains the same throughout these offsets, while
the baseline forecast accuracy degrades with larger offsets. These
results demonstrate the utility of our approach on realistic data,
that is expected to have more variation in seasonality.

4.4 Scaling and Implementation
Results shown above were for ∼11k agents over one month of
data. This simulated data was 9.77 GB, compressed and at rest and
results were run on a machine with 48 CPU cores. Computation and
memory requirements for the ∼11k agents are shown in Table 5; our
preprocessing procedure significantly reduces the size of the input
data to model. Additionally, preprocessing time is approximately
constant across spatial resolutions, as expected, and modeling time
increases linearly with the number of spatial cells to model; we fit
and forecast DGLMs across ∼ 4k spatial cells in just over 1 hour.

We have also applied our approach at a much larger scale and
are still able to preprocess and model the data efficiently. With our
approach, the preprocessing time depends on the number of raw
observations and not the choice of spatial or temporal resolutions

Table 4: Forecast accuracy metrics across S2 level 14 spatial
cells with noise added to the daily seasonal period. For exam-
ple, an offset of 1 hour means that the possible daily seasonal
periods were 23, 23.5, 24, 24.5, and 25 hours; this period was
randomly chosen for each day for each spatial cell. Table
format as in Table 2.

Offset Model RMSE MAE ZAPE
(hrs.)

0.5 DGLM 9.26 ± 14.91 3.86 ± 7.32 23.23 ± 42.21
Baseline 10.07 ± 15.79 3.57 ± 6.00 26.04 ± 29.80

1 DGLM 9.38 ± 15.33 3.94 ± 7.62 23.39 ± 41.89
Baseline 11.51 ± 18.92 4.45 ± 8.10 28.26 ± 34.39

2 DGLM 9.74 ± 16.84 4.08 ± 8.36 23.19 ± 47.92
Baseline 12.65 ± 21.24 5.25 ± 9.89 29.35 ± 39.00

3 DGLM 9.93 ± 17.31 4.15 ± 8.89 22.48 ± 47.39
Baseline 13.55 ± 22.99 5.81 ± 11.34 31.09 ± 54.95

for the modeling. Our preprocessing also significantly reduces the
size of the data to model. We applied this approach to additional
synthetic data with 484 million observations which was 472 GB
of data compressed and at rest. After transforming this data to
occupancy counts with a spatial resolution of S2 cell level 17 and
temporal resolution of 1 hour, the data size was reduced to 0.582
GB compressed. Preprocessing the 484 million observations took
10 hours on a 384-core cluster. We then fit 397352 DGLMs on the
same size cluster in 10 hours; each DGLM updated and forecasted
in an average of 2.5 seconds for 672 timesteps, or approximately 4
ms per DGLM per timestep to update and forecast.

Our approach was implemented in PySpark [12], with Apache
Sedona [13, 31] to encode the data into S2 cells and PyBats [16] to fit
the DGLMs. Further efficiencies are possible with additional tuning
of the Spark cluster and improvements to the implementation of the
DGLMs. However, our results show the feasibility of our approach
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Table 5: Computation time and memory requirements for the results shown on ∼11k agents for 28 days; the input data was 9.77
GB compressed and at rest. Preprocessing significantly reduces the size of the data to model and preprocessing time is the same
across spatial resolutions; modeling time scales linearly with the number of spatial cells/models.

S2 Cell Resolution Preprocessing Modeling Total Preprocessing # of Models
Time (Min.) Time (Min.) Time (Min.) Output (MB)

10 15.17 18.84 34.01 0.32 103
14 16.45 66.48 82.94 7.0 3938
17 16.49 526.92 543.41 49.0 42038

Figure 11: One-step ahead forecast mean and credible inter-
vals, compared to the seasonal baseline, for a DLMM fit to a
spatial cell at S2 level 14 with seasonal offset up to 3 hours.
The DLMM is better able to adapt to slightly varying seasonal
periods.

for very large scale datasets both in terms of the preprocessing and
the modeling; our preprocessing scales linearly with the number of
observations and the modeling scales linearly with the number of
space-time bins. Our approach is very well-suited to a distributed
computing environment, as each model only operates on a small
portion of the data and is independent of all other models.

5 Summary and Future Work
In this work, we present a scalable and flexible approach to model-
ing and forecasting human mobility data. Our approach encodes
the spatiotemporal data as occupancy counts in space-time bins and
models these counts with DGLMs. DGLMs provide efficient infer-
ence, probabilistic modeling and forecasting, flexibility to a range of
observed occupancy count levels (including very sparse occupancy
counts and over-dispersed counts), and can easily incorporate exter-
nal information, such as seasonality. We present forecast results on
synthetic human mobility data for ∼11k agents; DGLMs maintain
high forecast accuracy for a range of spatial resolutions and for long
forecast horizons. Finally, we show scaling results for much larger
synthetic data consisting of hundreds of millions of observations
to demonstrate the scalability of our approach.

Our approach is flexible enough to support a variety of down-
stream applications that require accurate, probabilistic forecasting

and modeling. For example, the forecast results could support traffic
or transportation management, location demand forecasting, and
urban planning. Additionally, the flexibility of our approach makes
it applicable to other types of spatiotemporal data beyond human
mobility, for example, our approach could aid in modeling animal
movements at scale.

There are several directions for future work and extensions of our
approach. One main direction, which would be largely application
driven, is to incorporate additional information into the DGLMs. For
example, the mobility data may include holiday effects that need to
be accounted for, different patterns of seasonality, or we may wish
to incorporate dynamic covariates for each spatial cell, related to
point of interest information, for example. We could easily extend
our approach to modeling flows of agents between spatial cells to
better support movement or transportation related applications.

On the modeling side, a main direction for future work involves
improving the modeling of very sparse spatial cells, especially cells
that are both sparse and have large non-zero counts, as in Figure 7.
Although DCMMs and DLMMs can accurately model a variety of
sparse count levels, extremely sparse counts are challenging to
model and forecast well; sparse time series modeling is a challenge
in many different settings [30]. One solution would be to model
at multiple resolutions or uneven spatial resolutions, to prevent
any spatial cells from being too sparse. Another solution would
be to share information over multiple spatial resolutions (and/or
temporal resolutions) with a multi-scale approach [3, 11, 30].

Another area for future work is faster tuning of the discount fac-
tors than a grid search-based approach. For the majority of spatial
cells, more fine-grained tuning of all discount factors improves fore-
cast accuracy. However, with a grid search, we have to fit a DGLM
for each combination of discount values to tune; it can be expensive
to tune over too many unique values. Using a coarse approximation
to this optimization problem could improve the forecast accuracy
while also improving the scalability of our approach.
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A Implementation Details
A.1 Summary of Overall Approach
Input: GPS trajectory data with ID, latitude, longitude, and times-
tamp observations

(1) Data Preprocessing: encode trajectory data into occupancy
counts following Figure 3. Result: occupancy counts 𝑦𝑖𝑡 for
every spatial cell 𝑖 ∈ 1, . . . , 𝐼 and time bin 𝑡 ∈ 1, . . . ,𝑇 .

(2) Initialize DGLMs: For all spatial cells 𝑖 ∈ 1, . . . , 𝐼 :
(a) Select the first 𝑡 timesteps for initialization (in results

above, 𝑡 = 288, or initialization over the first 72 hours with
15 minute temporal resolution)

(b) Select the observation distribution based on the mean of
the first 𝑡 occupancy counts, 𝑦𝑖1:𝑡 = 1

𝑡

∑𝑡
𝑗=1 𝑦

𝑖
𝑗
, and the

sparsity of these occupancy counts 𝑠𝑖1:𝑡 =
1
𝑡

∑𝑡
𝑗=1 1(𝑦𝑖𝑗 =

0):
• If 𝑦𝑖1:𝑡 > 50 and 𝑠𝑖1:𝑡 < 0.15, select a DLM.
• If 𝑦𝑖1:𝑡 ≤ 50 and 𝑠𝑖1:𝑡 < 0.15, select a Poisson DGLM.
• If 𝑦𝑖1:𝑡 > 50 and 𝑠𝑖1:𝑡 ≥ 0.15, select a DLMM.
• If 𝑦𝑖1:𝑡 ≤ 50 and 𝑠𝑖1:𝑡 ≥ 0.15, select a DCMM.

(c) Set the covariate vector 𝑭𝑡 and state matrix 𝑮𝑡 based on
the trend, covariate, and seasonal terms in themodel; these
values are known ahead of time and 𝑭𝑡 and 𝑮𝑡 are not
learned parameters. In this work, we use a linear trend
term, no covariates, and daily seasonality with the first
two harmonics (with 15 minute time bins, the period of
the seasonality, 𝑝 , is 96), 𝑭𝑡 = 𝑭 , 𝑮𝑡 = 𝑮 and:

𝑭 =
[
1 1 0 1 0

] ′
,
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𝑮 =


1 0 0 0 0
0 cos (2𝜋/𝑝) sin (2𝜋/𝑝) 0 0
0 −sin (2𝜋/𝑝) cos (2𝜋/𝑝) 0 0
0 0 0 cos (4𝜋/𝑝) sin (4𝜋/𝑝)
0 0 0 −sin (4𝜋/𝑝) cos (4𝜋/𝑝)


,

(d) Set and/or tune the discount factors. To tune the discount
factors:
(i) Select a grid of possible values for the discount factor(s)

to be tuned.
(ii) For each value in the grid, initialize the appropriate

DGLM with that discount factor value and update the
model over all timesteps 𝑡 ∈ 1, . . . , 𝑡 . Save the one-step
ahead forecasts and calculate the MAE.

(iii) Select the discount factor over the grid resulting in the
lowest MAE.

(iv) We set the seasonality discount factor to be 0.994, the
random effect discount factor or the stochastic variance
discount factor to 0.9, and tune the trend discount factor
over the grid of values [0.96, 0.97, 1.0].

(e) Result: an initialized DGLM for each spatial cell, M𝑖 .
(3) Modeling with DGLMs: In parallel across all spatial cells 𝑖

and sequentially for 𝑡 ∈ 1, . . . ,𝑇 :
(a) Forecast 𝑘 steps ahead with M𝑖 based on information up

to time 𝑡 − 1.
(b) Update model M𝑖 using occupancy count 𝑦𝑖𝑡 .

(4) Analysis: Analyze results and calculate metrics.
Steps (2) and (3) are implemented in PyBats [16].

A.2 DGLM Sequential Learning
DGLMs are Bayesian state space models (Equation 1), and learning
proceeds sequentially through time. Below are additional details
for step (3b) in the implementation procedure in Section A.1 above
for a Poisson DGLM. Sequential analysis is analogous for the other
DGLM forms, though the specific forms in steps (3) - (7) are unique
to the specific exponential family form. Procedure following [3, 30];
please see these references and [28] for the general case.

For Poisson DGLMM𝑖 at time 𝑡 , 𝑦𝑖𝑡 ∼ Poisson([𝑡 ), _𝑡 = log[𝑡 :
(1) State vector posterior from time 𝑡 − 1:

(𝜽𝑡−1 |𝑦𝑖1:𝑡−1) ∼ (𝒎𝑡−1, 𝑪𝑡−1); with E(𝜽𝑡−1 |𝑦𝑖1:𝑡−1) = 𝒎𝑡−1
and V(𝜽𝑡−1 |𝑦𝑖1:𝑡−1) = 𝑪𝑡−1.

(2) State vector prior at time 𝑡 : (𝜽𝑡 |𝑦𝑖1:𝑡−1) ∼ (𝒂𝑡 , 𝑹𝑡 ); with 𝒂𝑡 =
𝑮𝑡𝒎𝑡−1 and 𝑹𝑡 = 𝑮𝑡𝑪𝑡−1𝑮 ′

𝑡 +𝑾𝑡 .
(3) Prior for the natural parameter at time 𝑡 (variational Bayes

step): ([𝑡 |𝑦𝑖1:𝑡−1) ∼ Gamma(𝛼𝑡 , 𝛽𝑡 ).
(4) Evaluate the prior hyper-parameters 𝛼𝑡 and 𝛽𝑡 such that:
E(_𝑡 |𝑦𝑖1:𝑡−1) = 𝑓𝑡 = 𝑭 ′

𝑡 𝒂𝑡 and V(_𝑡 |𝑦𝑖1:𝑡−1) = 𝑞𝑡 = 𝑭 ′
𝑡 𝑹𝑡 𝑭𝑡 .

For the Poisson DGLM, 𝑓𝑡 = 𝜓 (𝛼𝑡 ) − log 𝛽𝑡 , and 𝑞𝑡 = 𝜓 ′(𝛼𝑡 ),
where𝜓 is the digamma function and𝜓 ′ is the first derivative
of the digamma function.We can use numerical optimization,
like Newton-Raphson, to solve for 𝛼𝑡 and 𝛽𝑡 .

(5) Forecast 𝑦𝑖𝑡 one-step ahead:
𝑝 (𝑦𝑖𝑡 |𝑦𝑖1:𝑡−1) = Negative Binomial(𝛼𝑡 , 𝛽𝑡/(1 + 𝛽𝑡 )).

(6) Posterior for [𝑡 at time 𝑡 : 𝑝 ([𝑡 |𝑦𝑖1:𝑡 ) = Gamma(𝛼𝑡 +𝑦𝑖𝑡 , 𝛽𝑡 +1).
(7) Map back to the linear predictor _𝑡 = log[𝑡 : posterior mean

𝑔𝑡 = E(_𝑡 |𝑦𝑖1:𝑡 ) = 𝜓 (𝛼𝑡 + 𝑦𝑖𝑡 ) − log(𝛽𝑡 + 1) and posterior
variance 𝑝𝑡 = V(_𝑡 |𝑦𝑖1:𝑡 ) = 𝜓 ′(𝛼𝑡 + 𝑦𝑖𝑡 ).

(8) State vector posterior at time 𝑡 : (𝜽𝑡 |𝑦𝑖1:𝑡 ) ∼ (𝒎𝑡 , 𝑪𝑡 ), with
posterior mean 𝒎𝑡 = 𝒂𝑡 + 𝑹𝑡 𝑭𝑡 (𝑔𝑡 − 𝑓𝑡 )/𝑞𝑡 and posterior
variance 𝑪𝑡 = 𝑹𝑡 − 𝑹𝑡 𝑭𝑡 𝑭 ′

𝑡 𝑹
′
𝑡 (1 − 𝑝𝑡/𝑞𝑡 )/𝑞𝑡 .

The initial state vector mean is𝒎0 = 0 and the initial state vector
covariance is 𝑪0 = 𝑰 , the identity matrix.

A.3 Forecasting
One-step ahead forecast distributions are calculated using step
(5) in Section A.2 (and the analogous form for the other DGLMs).
The marginal multi-step ahead forecasts are calculated similarly.
In the multi-step ahead case, step (2) in Section A.2 is updated
by iterating the state vectors forward in time; for 𝑘-step ahead
forecasts, step (2) becomes: 𝒂𝑡+𝑘 = 𝑮𝑘𝒎𝑡−1, 𝑹𝑡+𝑘 = 𝑮𝑘𝑪𝑡−1 (𝑮𝑘 )′,
where 𝑮𝑘 = 𝑮𝑡 × 𝑮𝑡+1 × . . . × 𝑮𝑡+𝑘 is the matrix power. 𝑾𝑡 can
optionally be added to 𝑹𝑡 to continue discounting while forecasting.
Steps (3) - (5) then proceed as in Section A.2 to result in forecasts
for 𝑘-steps ahead.

B Additional Forecast Example
We include an additional one-step ahead forecast example for a
DCMM compared to the seasonal baseline model (Figure 12). The
DGLM is able to adapt to the daily occupancy count spike, even
when it occurs slightly less than or more than 24 hours from the
previous spike; the seasonal baseline, which predicts the occupancy
count at time 𝑡 as the occupancy count observed 24 hours ago is
not able to adjust to noise in the seasonal period. Additionally, the
DGLM produces probabilistic forecasts, while the seasonal baseline
just produces point forecasts.

Figure 12: One-step ahead forecast mean and credible inter-
vals, compared to the seasonal baseline, for a DCMM fit to a
spatial cell at S2 level 14 with seasonal offset up to 3 hours.
The DCMM is better able to adapt to slightly varying seasonal
periods.
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