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ABSTRACT
Trajectory anomaly detection is crucial for effective decision-making
in urban and human mobility management. Existing methods of tra-
jectory anomaly detection generally focus on training a trajectory
generative model and evaluating the likelihood of reconstructing
a given trajectory. However, previous work often lacks important
contextual information on the trajectory, such as the agent’s infor-
mation (e.g., agent ID) or geographic information (e.g., Points of
Interest (POI)), which could provide additional information on accu-
rately capturing anomalous behaviors. To fill this gap, we propose
a context-aware anomaly detection approach that models contex-
tual information related to trajectories. The proposed method is
based on a trajectory reconstruction framework guided by contex-
tual factors such as agent ID and contextual POI embedding. The
injection of contextual information aims to improve the perfor-
mance of anomaly detection. We conducted experiments in two
cities and demonstrated that the proposed approach significantly
outperformed existing methods by effectively modeling contextual
information. Overall, this paper paves a new direction for advancing
trajectory anomaly detection.
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1 INTRODUCTION
Advancements in Global Positioning System (GPS) and sensor tech-
nologies have accelerated the generation of human trajectories to
an unprecedented pace. Human trajectory data can reflect agents’
mobility behavior, providing insights into business strategies or
governments. For example, analyzing an agent’s routine commute
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to work and visits to a bar can enable businesses to recommend
nearby bars or relevant places. Furthermore, a sudden change in
the agent’s daily pattern can reflect a habit switch and provide new
insights into the individual’s behavior or preferences. Thus, tra-
jectory anomaly detection is a pivotal problem in monitoring and
analyzing abnormal patterns. Detecting anomalous trajectories can
reveal changes in daily routines and provide valuable information
for policymakers.

Trajectory anomaly detection has been gaining attention re-
cently [8, 10, 12]. Existing trajectory anomaly detection borrows
ideas from anomaly detection techniques developed for other types
of data, such as time series data [2] and images [5]. These methods
transform the trajectory data into a ‘sequence format’ and apply
generative models to reconstruct the sequence for anomaly detec-
tion. For example, [12] introduces a trajectory anomaly detection
method that utilizes the detection-via-generation framework with
Variational Autoencoder (VAE) [15], which is widely employed for
detecting anomalies in time-series data [1] and images [9]. The un-
derlying idea is that the learned VAE should effectively reconstruct
normal data while reconstructing anomalous data is difficult. How-
ever, existing studies lack information on the context of trajectory
data, which can provide valuable insights for detecting anomalous
patterns. Thus, we propose a context-aware trajectory anomaly
detection method that incorporates the contextual information
of the trajectory data, built upon a representative reconstruction-
based anomaly detection method [12]. Our goal is to inject context
features into trajectories to enable precise reconstruction and gen-
eration of trajectories and ultimately improve the performance of
anomaly detection.

To enrich the trajectory data, we aim to incorporate (1) auxiliary
information (e.g., the identity of an agent, so-called agent ID) and (2)
external geographic data, such as Points of Interest (POI) databases.
First, regarding auxiliary information, the trajectories with the
same points can be normal for one agent, while anomalous for
another agent if the trajectory presents an unusual pattern in the
person’s behavior. For example, a rare visit to New York City for an
individual who rarely travels may be flagged as an anomaly, while
it could be a regular occurrence for a resident of New York City. The
agent ID can help distinguish these two agents. Second, contextual
information (e.g., neighboring POIs) can provide important clues
to detect anomaly trajectories. For example, an agent’s visit to
a coffee shop nearby a campus can be a different mobility type
from visiting a coffee shop at the airport. Therefore, we leverage
the two types of context: the identity of the agent (i.e., agent ID)
and the neighboring POIs of trajectories. The proposed method
can capture potential connections between trajectories and the
context by reconstructing the trajectory conditionally on contextual
information. We conducted experiments on the trajectory data in
two large cities to demonstrate the effectiveness of the proposed
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method compared to the existing trajectory anomaly detection
method, which did not incorporate any contextual information.

2 PROBLEM STATEMENT
Given a set of agents {𝑎1, 𝑎2, ...𝑎𝑛}, we denote a trajectory of an
agent 𝑎𝑛 over a long period as a sequence of chronologically or-
dered 𝑚 points 𝑃𝑎𝑛 = {𝑝𝑎𝑛1 → 𝑝

𝑎𝑛
2 → ... → 𝑝

𝑎𝑛
𝑚 }, where each

point 𝑝𝑎𝑛𝑚 is represented by GPS coordinates. A subtrajectory of
a trajectory is defined as a subsequence of a trajectory with any
number of consecutive points. A subtrajectory could be an anomaly
if it deviates significantly from the regular pattern in the entire
trajectory. Under these definitions, given a set of trajectories from
a large group of agents (e.g., from a city), this paper aims to detect
the agent whose trajectories contain anomalous subtrajectories.
Existing work on trajectory anomaly detection [8, 12] focuses on
detecting anomalies for a short trajectory while the trajectory of an
agent is much longer than the maximum input length of the model.
To mitigate this issue, we propose a method to preprocess the long
trajectories into short ones and aggregate the results from short
trajectories to obtain the anomaly detection results at an agent
level.

3 METHOD
Figure 1 shows an overview of the proposed method. Section 3.1
presents the procedure to generate the sequence of stay points
from a raw GPS trajectory. Next, Section 3.2 shows how we encode
preprocessed trajectory grid tokens into context-aware represen-
tations and leverage contextual representations to condition VAE.
Lastly, Section 3.3 indicates the proposed way of getting agent-level
anomaly scores from the anomaly scores of a set of subtrajectories.

3.1 Trajectory Preprocessing
The original trajectory is represented by the raw GPS points over
time. To mitigate the noise in the GPS signal and retain the over-
all semantics of the trajectory, we apply a commonly used pre-
processing method to transform an original trajectory into stay

points [3, 4, 13]. The trajectory record of an agent over a long pe-
riod can be very long, but subtrajectories could reflect the diverse
mobility types of an agent. Thus, we propose strategies to partition
the trajectory of an agent 𝑎𝑛 into subtrajectories S𝑖 consists of a
sequence of stay points, {𝑠𝑎𝑛1 , 𝑠

𝑎𝑛
2 , ..., 𝑠

𝑎𝑛
𝑤 } and expect that different

subtrajectories could represent diverse mobility types. Finally, we
partition the area of a city into grids and map the stay points of
all subtrajectories from all agents into sequences of grid tokens.
Thus, we encode the grid token sequence of the 𝑖-th subtrajec-
tory, x𝑖 = {𝑥1, 𝑥2, ..., 𝑥𝑤}, where𝑤 is the sequence length, into the
context-aware VAE. Each token corresponds to the grid where a
stay point has been mapped.

The Stay Point Detection algorithm [6] extracts stay points from
the raw trajectory by partitioning the trajectory with a given time
duration threshold and a radius representing the surrounding area.
We propose two strategies for partitioning the long trajectory. First,
if an agent stays at a location for a long time, we can split the
trajectory at this location. The reason is that the agent stays at a
location for a long time, indicating that the agent is doing something
there. For example, an agent spends a night sleeping at home for
several hours, or an agent spends multiple hours working in the
company. Second, if an agent spends too long (e.g., 5 hours) on
a transition (i.e., from one location to another), we also cut the
trajectory at this transition. The reason is that an urban trip should
be finished quickly due to the size of the city. A transition that is too
long may result from a missing location in the middle. In this way,
the long trajectory of an agent over a long period is partitioned into
short subtrajectories with diverse mobility types. After partitioning
long trajectories into a set of subtrajectories, we map stay-point
sequences into grid token sequences.

3.2 Context-Aware Variational Autoencoder
We develop the proposed method by employing contextual infor-
mation (e.g., the agent ID of the trajectory and the surrounding
POIs) to guide reconstruction for anomaly detection upon existing
VAE-based method [12]. After the preprocessing steps, the stay
points sequence is transferred into grid token sequences for VAE to
reconstruct (Figure 1). In addition, the agent ID and POI contextual

Figure 1: An overview of the proposed method. Section 3.1 shows preprocessing steps to process Global Positioning System
(GPS) trajectory into stay points and stay points into grid token sequence. Section 3.2 presents how we encode trajectory grid
tokens into context-aware Variational Autoencoder (VAE) conditioning on contextual representations, which incorporates
agent ID embedding and Points of Interest (POI) contextual embedding. Lastly, Section 3.3 shows the retrieval of an agent-level
anomaly score from the subtrajectory anomaly scores.
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information become the conditions to guide the reconstruction. We
generate the anomaly score by comparing the reconstructed and
original token sequences.

VAE-based methods such as [12] can reconstruct any given token
sequence and compare the reconstructed token sequence with the
input token sequence to obtain the anomaly score. Although the
Gaussian Mixture Model (GMM) could be used as the prior latent
variables and allow the VAE model [12] to model the multinomial
distribution, we argue that the diversity of agents’ trajectory pat-
terns is too complex to capture with the GMM. Thus, we propose
using personalized, contextual information to capture these person-
alized details and guide the generative model. Particularly, we use
a conditional VAE instead of a vanilla VAE to obtain the anomaly
score of a trajectory. Our proposed model consists of two main
steps: 1) contextual representation generation and 2) context-aware
token sequence reconstruction.

Contextual Representation Generation. We develop a unified
contextual layer for encoding contextual information as below.

• Agent Embedding: Several agents typically have various
moving behaviors. To model the personalized pattern at the
agent level, we propose to use an agent embedding that could
map an agent ID into a vector as an agent embedding. A sim-
ilar idea has been widely used in recommendation systems
to model the personalized pattern for people [11]. Agents
with similar behaviors are expected to produce similar agent
embedding, which the model learns in an end-to-end fashion.

• POI Contextual Embedding: Surrounding POIs of trajec-
tories can provide insights into mobility types of trajectories.
POIs consist of textual data (e.g., name and categories) and
spatial data (e.g., geocoordinates). The goal here is to gen-
erate contextual POI embeddings that capture the charac-
teristics of surrounding POIs, ensuring that POIs within the
same category are represented by distinct embeddings. To
achieve this, we extend SpaBERT [14] to leverage pretrained
language models to contextualize the semantic meanings
and spatial and topological relationships of POIs in relation
to their neighboring POIs and polygons of interest. After
generating the contextual POI embeddings, we cluster all
learned embeddings and assign a cluster type to each POI
as a new contextualized category, replacing the original POI
categories. A grid-level POI embedding is then represented
by a count vector indicating the contextual category of POIs
within each grid. Finally, we sum all grid-level POI embed-
dings from the grid sequences to obtain a final contextual
POI embedding that represents a subtrajectory. The final con-
textual POI embedding is used to guide the reconstruction
of the token sequence.

Context-Aware Token SequenceReconstruction. Figure 1 presents
the architecture of the proposed context-aware generative model.
Given a subtrajectory’s sequence of grid tokens, we leverage the
contextual embedding-guided conditional generative model to re-
construct the input grid token sequence. The main idea of our
context-aware VAE anomaly detection is that, for a given grid to-
ken sequence input of 𝑖-th subtrajectory x𝑖 = {𝑥1, 𝑥2, ..., 𝑥𝑤} of

length𝑤 and the corresponding contextual representation c𝑖 , the
corresponding latent variable zi is

𝜇z𝑖 , 𝜎z𝑖 = 𝑓𝜃 (z𝑖 |x𝑖 , c𝑖 ) (1)

zi ∼ N(𝜇z𝑖 , 𝜎z𝑖 ) (2)
where 𝑓𝜃 (z𝑖 |x𝑖 , c𝑖 ) is the encoder neural network and models

the probability 𝑞𝜙 (z𝑖 |x𝑖 , c𝑖 ).
Then, the reconstruction probability is calculated using theMonte

Carlo estimate with 𝐿 sampling pairs (𝜇x̂𝑖,𝑙 , 𝜎x̂𝑖,𝑙 ):

𝜇x̂𝑖,𝑙 , 𝜎x̂𝑖,𝑙 = 𝑔𝜙 (x𝑖 |z𝑖,𝑙 , c𝑖 ) (3)

𝐸𝑞𝜙 (z𝑖 |x𝑖 ) [log𝑝𝜃 (x𝑖 |z𝑖 )] =
1
𝐿

𝐿∑︁
𝑙=1

𝑝𝜃 (x𝑖 |𝜇x̂𝑖,𝑙 , 𝜎x̂𝑖,𝑙 ) (4)

where the 𝑔𝜙 (x𝑖 |z𝑖,𝑙 , c𝑖 ) is the decoder neural network to model
probability 𝑝𝜃 (x𝑖 |z𝑖 , c𝑖 ). 𝐸𝑞𝜙 (z𝑖 |x𝑖 ) [log 𝑝𝜃 (x𝑖 |z𝑖 )] is the likelihood
to reconstruct the input sequence and ŷi = 1−𝐸𝑞𝜙 (z𝑖 |x𝑖 ) [log 𝑝𝜃 (x𝑖 |z𝑖 )],
interpreted as an anomaly score. The lower the probability of re-
construction, the more likely the time step 𝑖 is an anomaly.

The objective function to train the context-aware VAE network is
the evidence lower bound (ELBO) over all the sequences as follows:

L=
∑︁
𝑖

𝐸𝑞𝜙 (zi |x𝑖 ,c𝑖 ) log𝑝𝜃 (x𝑖 |zi, c𝑖 )-𝐷𝐾𝐿 [𝑞𝜙 (zi |x𝑖 , c𝑖 ) | |𝑝 (zi ) ] (5)

3.3 Agent-Level Anomaly Inference
Our context-aware generative model only provides the anomaly
score for each grid-token sequence. To obtain the anomaly score for
the agent level, we propose to infer the agent anomaly score based
on the token sequence anomaly scores. Even though multiple token
sequences could be detected as anomalies, we argue that the most
suspicious part of the trajectory could reflect the suspicious level
of the agent. Thus, we use the maximum anomaly score over all
the anomaly scores from all grid-token sequences of an agent (i.e.,
all subtrajectories of an agent) as the agent-level anomaly score.

4 EXPERIMENTS
Experiment Settings. We evaluate our methods using simulated

trajectory data from two cities. We partition the whole data into
two halves along the temporal dimension for training and testing,
respectively. The grid size is set to 500 meters × 500 meters (cho-
sen under hyperparameter search). Table 1 shows the descriptive
statistics of trajectory data after preprocessing.

Table 1: Descriptive statistics of datasets.

Location #Agents #POIs
# Training
Grid-Token
Sequences

# Test
Grid-Token
Sequences

# Grid-Token
Sequence
Length

City 1 152,586 595,125 2,745,662 2,741,000 [2, 18]
City 2 499,875 80,956 8,807,570 1,497,371 [2, 32]

Anomaly detection is a binary label problem, and we can employ
the F1 score as an evaluation metric. However, the F1 score depends
on the anomaly threshold. Area Under the Receiver Operating
Characteristic Curve (AUC-ROC) is another commonly employed
metric for binary label problems. However, the data distribution in
anomaly detection is highly imbalanced, as positive instances (i.e.,
anomalies) are rare compared to negative instances (i.e., normal).
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Thus, AUC-ROC can be dominated by the number of negative
instances and produce optimistic results. To address these issues,
we employ the precision-recall curve as our evaluation metric,
which is recommended for highly skewed domains where ROC
curves may provide an overly optimistic view of performance [7].

Experiment Results. Table 2 shows the experimental results.
Using both POI contextual embedding and agent ID embedding
shows the best performance for two locations. The results imply
several meanings as follows. First, by comparing the method with
no context to using POI categories directly as context, POI cate-
gories cannot guarantee performance improvement. The reason is
that the frequencies of POI categories may not fully capture the
spatial characteristics of grids, meaning that grids having similar
distribution of POI categories can still have diverse characteristics.
For example, starting a trajectory from school and stopping in a
school encodes the frequencies of the same POI category. This may
not provide enough personalized information for an agent, result-
ing in low performance. Second, by comparing the method with
no context to employing our new contextualized category of POIs
(i.e., POI contextual embedding setting), involving our contextual-
ized category of POIs can perform better than using the original
POI categories. We believe that, as the POI contextual embeddings
capture the semantic meanings and spatial relationships among
neighboring POIs, incorporating the learned POI contextual embed-
ding becomes discriminative even for POIs of the same categories.
Regarding ‘City 2’, the performance of using no context is higher
than the one using POI categories or POI contextual embedding. We
believe that the low performance is due to the lack of POIs for the
areas that trajectories pass by (i.e., the inconsistent gaps between
#Agents and #POIs in Table 1 between two cities). Third, by compar-
ing no context with the agent ID embedding setting, agent ID could
consistently improve the performance. This suggests the impor-
tance of agent ID in reflecting personalized information at the agent
level. Fourth, by comparing no context with the combination of
POI contextual embedding and agent ID embedding, the combined
context could achieve the best performance. This indicates that
personalized information from the new contextualized categories
of POIs and agent IDs can complement each other and provide a
comprehensive context for personalization. This combination can
further improve the performance.

Table 2: Experiment results on anomaly detection.

Location
No

context
POI

Categories

POI
Contextual
Embedding

Agent ID

POI
Contextual
Embedding +
Agent ID

City 1 0.0457 0.0531 0.0835 0.1609 0.2212
City 2 0.3675 0.3064 0.3122 0.4618 0.4725

Case Study of POI Contextual Embeddings. Our learned POI
contextual embeddings represent the frequency of clusters within
each grid, and we can interpret the cluster labels as a new latent
semantic type. To demonstrate the effectiveness, we learn the POI
contextual embedding in Los Angeles and visualize a particular
latent semantic type in Figure 2 by highlighting the grids with the
same color (i.e., green-colored grids). The grids with the same color
appear not only over the campus areas (i.e., blue-colored text labels)

but also in Century City, near Hollywood, and in the bottom-left
corner at Marina del Rey (i.e., orange-colored text labels). Each loca-
tion is a vibrant area in Los Angeles that attracts residents, tourists,
and businesses, often hosting cultural activities and events. The
qualitative analyses of the learned latent semantic type indicate that
the learned semantic type can capture the distinct characteristics of
areas, which provides a more comprehensive context for anomaly
detection than the original POI categories.

Figure 2: A visualization of grids from a specific cluster label
generated by clustering the learned contextual embeddings
of Points of Interest (POI).
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