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Abstract
Historically, much of the research in understanding, modeling, and
mining human trajectory data has focused on where an individ-
ual stays. Thus, the focus of existing research has been on where
a user goes. On the other hand, the study of how a user moves
between locations has great potential for new research opportuni-
ties. Kinematic features describe how an individual moves between
locations and can be used for tasks such as identification of indi-
viduals or anomaly detection. Unfortunately, data availability and
quality challenges make kinematic trajectory mining difficult. In
this paper, we leverage the Geolife dataset of human trajectories
to investigate the viability of using kinematic features to identify
individuals and detect anomalies. We show that humans have an
individual “kinematic profile” which can used as a strong signal
to identify individual humans. We experimentally show that, for
the two use-cases of individual identification and anomaly detec-
tion, simple kinematic features fed to standard classification and
anomaly detection algorithms significantly improve results.
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1 Introduction
Most often, when working with human trajectory data, research
has focused on mining and analyzing the locations where a user
arrives and stays (or what we may call ‘staypoints’). Using these
staypoints, one can learn about a user’s behavior and daily/weekly/-
monthly patterns. In fact, having just 4 of an individual’s staypoints
is sufficient to uniquely identify them [2]. This makes an individ-
ual’s staypoints Personally Identifiable Information (PII), requiring
certain privacy measures to be taken when working with them.
However, staypoints comprise only a part of human trajectory data.
We call the movement of users on roads or paths between these
staypoints ‘trips.’ Very little research has been done on identifying
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individuals based on their trips, since studies are generally more
focused on where an individual goes, not how they get there.

That said, if a user’s staypoints can be used to uniquely identify
them, then it stands to reason that their trips could as well. Consider
two individuals who drive in their car from one staypoint to another
at the exact same time. Based solely on their staypoints, they would
appear the exact same, but in fact they likely moved between the
staypoints with completely different kinematic behavior. Some
individuals drive faster, while some speed up or slow down more
suddenly. Each individual should have a kinematic profile which is
unique to them and how they move from place to place.

These kinematic profiles may also be PII. Additionally, they could
be used to identify kinematic anomalies. Consider, for example, if
an individual’s phone was stolen. The phone, which tracks the GPS
location of the user, would know the kinematic profile of how the
owner moves. Sensing a kinematic anomaly in the kinematic profile
of the thief, it could take security measures to protect the owner’s
data. Alternatively, a ship may veer off-course to partake in illegal
fishing activities, but falsify its trajectory during that time to appear
that it stayed on course. The falsified trajectory could be flagged
as kinematically different from the ship’s normal trajectory. While
this is all idealistic, it is a challenging problem for several reasons.
First, it is hard to collect high-quality human trajectory data. For
reasons already discussed, these data are protected for privacy [15],
so it needs to be collected from anonymous volunteers. One of the
most well-known examples is the Geolife GPS trajectory dataset
[16, 17], which collected GPS data from 182 users in Beijing China,
over a period of several years. Unfortunately, due to the volunteers
selectively using the GPS tracking, inconsistent sampling rates, and
GPS location errors, it is still difficult to mine accurate kinematic
data from this dataset. However, our results show that we can still
do so sufficiently to both classify users by their kinematic data, and
identify kinematic anomalies.

This paper is organized as follows: In Section 2, we highlight
related works. In Section 3, we describe the dataset, then explain
how we mine the kinematic features in Section 4. In Section 5, we
present our experimental results. We provide case studies for users
on whom the models worked well and conclude in Section 6.

2 Related Works
Human trajectory data is spatio-temporal data which records the
locations of humans at different timestamps. It has been shown to
be PII, as it can be used accurately for user classification [2, 12].

Meng et al. [11] surveys and categorizes various methods of
anomaly detection trajectory data. Lee et al. [7], for instance, par-
titions trajectories into sub-trajectories and focuses on grouping
these, rather than looking at them in whole. This serves as the basis
for many trajectory anomaly detection algorithms.

Due to privacy concerns, much recent research uses simulated
data such as Stanford et al. [13]. Some such methods for trajectory
outlier detection employ deep neural networks [3], large language
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models [14], or more explainable approaches such as collaborative
filtering [9]. However, simulations usually do not model realistic
kinematic features, so we focus on real-life data for this work.

Some trajectory anomaly detection algorithms which consider
kinematic features concernmaritime vessels [4, 8], but only consider
speed and direction. Lu & Xia [10] also consider speed, acceleration,
and direction for trajectory classification with great success.

3 Description of Data
The Geolife GPS trajectory dataset was collected from 182 individ-
uals in Beijing, China between 2007 and 2012. It records, for each
user, a sequence of timestamps, latitudes, longitudes, and other
spatial data such as altitude over some period of time.

While many of the users carried their GPS trackers over long
periods of times, about 24% only did so for less than a week, and
only about 42% of them did so for more than a month. This reduced
the amount of users with sufficient, usable data. Furthermore, many
of the users exhibit inconsistent sampling rates, where the amount
of time between timestamps can vary wildly. This not only makes it
more difficult to mine kinematic features from the users, but along
with GPS errors, makes it difficult to determine when a user is at
a staypoint, trip, or simply not using the tracker. Fortunately, the
dataset also provides a list of trips, annotated by their modality, or
method of transportation (e.g. train, car, walk), for 73 of the users.
These trips include a start time, end time, andmodality for the user’s
movements. Using these, we no longer need to analyze the raw
trajectories to extract trips, although it again reduces the amount of
available data. Therefore, for the following study and experiments,
we select GeoLife users having (1) annotated trip modality labels,
(2) trips which do not appear to have extreme GPS errors, and (3)
at least 30 such trips.

4 Methodology
Using the trajectory data, and the start and end times for the trips,
we can extract kinematic features per trip. We approximate the
speed of the user by calculating the distance between the coordi-
nate pairs at consecutive timestamps, and further approximate the
acceleration of the user by taking the differences of consecutive
speeds. Of course, neither of these can be perfectly accurate: cal-
culating speed as distance over time assumes that the user was
moving in a straight line, and calculating acceleration in this way
assumes that changes in speed happen instantaneously at each
timestamp. Additionally, as the sampling rate decreases, the more
rough these approximations become. Using the speeds and accel-
erations, we extract 10 kinematic features per trip, listed in Table 1.
After extracting these features, we notice that many trips include
impossible values, such as trips spanning a period of over 100 days,
or with speeds of up to 3000000 m/s. Therefore, we reduce the set of
trips by removing those which constitute an anomaly for any of our
10 features. These anomalies are determined using the interquartile
range. Finally, we take only those users which have a sufficient
amount of trips after this reduction, a bound which we select as
30. This leaves only 6145 trips over 26 users which are usable for
our experiments. Furthermore, the data is considerably imbalanced.
The number of trips per user range from 31 to 748. On average, a
user has approximately 236 trips, but with great variance; 12 of the
users have less than 100 trips.

Kinematic Feature Mean Std Dev
Trip Duration in 𝑠 20144.587 23781.262

Maximum Speed in 𝑚
𝑠 29.006 16.737

Minimum Speed in 𝑚
𝑠 0.0 0.0

Max. Positive Acceleration in 𝑚
𝑠2

21.845 16.439
Min. Negative Acceleration in 𝑚

𝑠2
-20.038 15.606

Mean Speed in 𝑚
𝑠 4.095 2.361

Mean Absolute Accelerations in 𝑚
𝑠2

0.946 0.340
Std Dev of Speed in 𝑚

𝑠 3.889 1.963
Std Dev of Acceleration in 𝑚

𝑠2
1.978 0.942

Std Dev of Absolute Accelerations in 𝑚
𝑠2

1.714 0.930
Table 1: Summary of Kinematic Features Used in this Work.

Model Accuracy ROC-AUC F1 score
Decision Tree .303 ± .008 .589 ± .004 .208 ± .006
Weighted Guess .079 ± .005 .500 .041 ± .005
Random Guess .035 ± .003 .500 .026 ± .002
Table 2: Results compared to random classifiers

5 Experiments and Results
We provide two experiments: in Section 5.1, we use the kinematic
features to perform user-wise classification of the trips. This is
done with a simple decision tree over the kinematic features. In
Section 5.2, we perform anomaly detection by taking the trips
of a single user and adding trips randomly selected from other
users as anomalies. This detection is done using the Local Outlier
Factor (LOF) algorithm [1]. In both experiments, we provide a case
study for one user who provides particularly promising results. The
code to generate the data and run these experiments is available at
https://github.com/lancek23/trajectory-kinematics.
5.1 Classification
Trips are classified user-wise over 5 stratified folds, helping the
decision tree to train and be tested on a sufficient amount of data
per user. We evaluate the results of classification by the following
metrics: accuracy, area under the receiver operating characteristic
curve (ROC-AUC), and F1 score. The ROC-AUC helps us ensure
that the model works better than a random classifier. The F1 score
uses “macro" aggregation, taking the unweighted mean of scores
across the different class labels, and serves as a conservative metric
for class-imbalanced problems based on precision and recall.

We provide two random classifiers against which we measure
our results. The first classifier uses a “weighted random guess" in
which it predicts a label with a probability equal to the proportion
of that label in the dataset. The second classifier uses a “true random
guess," and predicts each label with equal probability. The results
can be seen in Table 2, aggregated over the 5 folds. By all metrics,
our model is superior to any random classifier, correctly classifying
around 30% of all trips in the dataset.

We now provide an example confusion matrix in Figure 1. The
user labels are organized in this matrix from most to least trips, for
convenience. We can observe that the decision tree lacks the bias
that the weighted random guess will have towards those users with
more trips, and is still able to correctly predict some of the trips
for those users with relatively few trips. We observe that the kine-
matics based user identification is substantially better than random
guessing. We also observe that for some users, the classification is
very accurate. For example, for User 068, we observe a Recall of 36%
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Figure 1: Confusionmatrix for the decision tree model. Users
are sorted by their number of trips.
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Figure 2: A plot of kinematic features of 5 users. Note the
dense purple cluster formed by one of the users.
and a Precision of 38%. For User 128, we observe a Recall of 69%
and a Precision of of 71%. These are substantially higher than the
Precision/Recall values of 1/26 ∼ 4% that we would expect using
random guessing. We also observe that the model confuses some
users. For example, User 126 is frequently misclassified as User 167,
having a Recall of only 6% and a Precision of only 5%. What makes
some users easier to detect kinematically than others?
5.1.1 Case Study. To investigate this question, we provide a case
study for a user we call “User 128." User 128 has noticeable kinematic
patterns, particularly in their maximum speed and in their standard
deviation of absolute accelerations per trip. The trips of User 128
make up the dense, purple cluster seen in Figure 2. We can again
observe the kinematic profile of User 128 in Figure 3, which plots
the maximum speed vs the average speed of the trips for a few users.
We see that despite changes in average speed, the maximum speed
achieved by User 128 appears consistent. Alternatively, some of the
other users plots look nearly uniform, with less apparent trends.
In reality, it is likely that the other users achieve more consistent
maximum speeds during different trips, but data collection errors
and low sampling frequencies lead to issues in capturing this.

User 128 was consistently easy for the decision tree to classify.
In Figure 1, we see that more of the true positives we find are from
User 128 than any other, despite having only the third-most trips in
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Figure 3: A plot of kinematic features of 5 users. Note the
consistency of max speed for the user plotted in purple.

LOF Random Classifier
Mean 0.087 0.046
Std 0.164 0.057
Min 0.014 0.011

Median 0.042 0.030
Max 1.000 0.518

Table 3: PR-AUC summary statistics

the dataset. While this is partially explainable from decision trees
having a natural bias towards labels with more observations in
a dataset, User 128 is still much easier to identify than the other
users with a large number of trips. This is because users 128’s
trips are more well-clustered than the trips of other users. User
128 provides an example of what is possible in using kinematics
to discriminate between human trajectories. With more accurate
datasets in the future, we hope to show that the results for User
128 can be replicated on a greater number of human trajectories.

5.2 Anomaly Detection
To perform anomaly detection, we first inject anomalous mobility
by swapping user IDs of trips, thus assigning a trip of one user to
another user. For each user, we randomly select trips from the other
users up to roughly 3% of the number of trips the original user has
in the dataset. These trips together form our new dataset.

Using the LOF algorithm, we assign an anomaly score to each
trip based on their local density [1]. We expect that the trips of the
normal user will be kinematically similar and will form a dense
cluster, while the anomaly trips will be far from this cluster with
few nearby neighbors. Furthermore, the different modalities (walk,
car, etc) of the normal user should each form their own cluster, with
the inserted trips apart from each of them. Sorting the trips by their
anomaly score, we find the area under the precision-recall curve
(PR-AUC), which is a useful indicator for binary data.

We allow each of our 26 users to serve as the “normal" user for 10
trials, randomly adding anomalies for each trial as described, for 260
total trials. We also run the same experiments but assign anomaly
scores using a random classifier rather than the LOF algorithm as a
baseline. The results are summarized in Table 3.

These results are, unfortunately, not as good as we had hoped.
We’re still able to outperform a random baseline, which uniformly
at random selects 3% of trips as anomalies. But the results of the
LOF having a mean AUC-PR of 8.7% is not practically useful. This
is surprising, as we found that the decision tree classifier was able
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Figure 4: A plot of kinematic features of 4 users. Note the
consistency of average speed for the user plotted in red.

to accurately identify the user that generated a trip. Yet, the LOF
struggles to detect an agent changing their identity. A problem
might be the large number of kinematic features that we consider,
whichmay cause the LOF, which computes distances betweenmulti-
dimensional points, to run into the Curse of Dimensionality [5]. It
may be possible to automatically find the right subspaces to detect
outliers in as proposed in [6], but we leave this study for future work.
Additionally, we believe that much of this is due to the previously
mentioned issues with data collection. If there are errors in mining
the kinematic features of a user, then it may be impossible to find the
true patterns for that user and build an accurate kinematic profile.
However, there are some users which we are able to perform better
on than others. We believe that these users are not necessarily easier
to discriminate from others, but rather that these users have more
accurate data, allowing us to build accurate kinematic profiles of
them. We provide a case study of one such user in section 5.2.1.
5.2.1 Case Study. The user we call “User 147" consistently per-
formed well in anomaly detection. Figure 4 shows this user, along
with some others, plotted by two kinematic features. We notice
that User 147, plotted in red, is very consistent in its average speed
compared to the other users. This explains why User 147 is so easy
to find anomalies with: any trip with an average speed outside of
its typical range can be marked as an anomaly. In the classifica-
tion problem, User 147 wasn’t as easy to identify due to so many
other trips having similar average speeds, but when it represents
the majority “normal" class, this is no longer an issue. In fact, in
the 10 trials where User 147 was “normal," the LOF algorithm had
an average PR-AUC of 0.29, even achieving 0.792 in its best trial.
User 147 demonstrates an important principle: when the user has a
consistent kinematic profile, anomaly detection becomes easy.

6 Conclusion and Future Work
This paper provides an early look into the potential of kinematic
data mined from human trajectory data. Using relatively simple
models, we are able to classify trajectories by user, and identify
anomalous trips from a user of interest.

This has important implications in privacy, as kinematic data
may be PII, and therefore important to keep under privacy restric-
tions. It also has practical uses in identifying unusual or falsified

trajectories. These may signify a phone being stolen as the kine-
matic profile of the user changes, or a ship falsifying their trajectory
to cover up illegal behavior. With more accurate datasets in the
future, the ability to perform classification and anomaly detection
tasks using kinematic data could be even greater. In addition, more
complex models may be able to detect new patterns in the kinematic
profiles, yielding improved performance.
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